
Stream
Version 2.1, 2025-11-05

Table of Contents
1. Installation . 1

1.1. Introduction . 1

1.2. Installing on CentOS/RHEL . 1

1.3. Installing on Kubernetes. 54

1.4. Monitoring . 61

1.5. Troubleshooting . 63

1.6. Advanced configuration . 67

2. Admin guide . 81

2.1. Introduction. 81

2.2. Managing Certification Authorities . 81

2.3. Managing Certificate Revocation . 86

2.4. Managing Certificate Templates & EKUs. 94

2.5. Managing Certificate Lifecycle . 96

2.6. OpenSSH . 98

2.7. Managing Keystores & Keys. 101

2.8. Managing Notifications. 106

2.9. Managing Security . 110

2.10. Managing Stream instance . 118

2.11. Timestamping . 127

2.12. Backup and Restore . 128

2.13. Dictionaries . 131

2.14. Computation rule . 134

2.15. Template Strings. 142

Chapter 1. Installation

1.1. Introduction

Description

Stream version 2.1 is EverTrust Certification Authority. This document is an installation procedure
detailing how to install and bootstrap a Stream instance on your infrastructure for the version 2.1.
It does not describe how to configure and operate the instance. Please refer to the administration
guide for administration related tasks.

Prerequisites

Choose an installation method

We offer two installation modes:

• A package-based installation on a server running CentOS/RHEL 7.x/8.x/9.x x64

• A cloud-native installation using Kubernetes

Depending on your needs, you’ll have to choose the solution that fits your use cases the best. Reach
out to our support team to get suggestions on how to deploy on your infrastructure.

Gathering your credentials

Both methods require that you download the binaries of the Stream software from our software
repository. The access to this repository is protected by username and password, which you should
have got from our tech team. If you don’t, you won’t be able to continue with the installation. Email
us to get your credentials, and come back to this step.

1.2. Installing on CentOS/RHEL

1.2.1. Pre-requisites

This section describes the system and software pre-requisites to install Stream.

System pre-requisites

The following elements are considered as system pre-requisites:

• A server running a en-US minimal install EL [8.x-9.x] x64 (RHEL / AlmaLinux / RockyLinux /
Oracle Linux) with the network configured.

• Base EL [8.x-9.x] x64 repositories activated;

• An access with administrative privileges (root) to the server mentioned above as most
commands are system-related and require super user privilege;

1

https://repo.evertrust.io
https://repo.evertrust.io

Software pre-requisites

All the following packages can be necessary to deploy Stream. Most are available on public
repositories but some require specific configurations.

Package name Manda
tory

Online
Instructions

Offline
instructions

Additional
information

stream-2.1.x-1.x86_64.rpm ☑ Online steps Offline steps

mongodb-mongosh, mongod-org-server-
mongodb-org-tools, mongodb-database-
tools`, mongodb-org-database-tools-
extra

☑ Online steps Offline steps

nginx Online steps N/A Recommended
reverse proxy

stream-hardening-1.x86_64.rpm Online steps Offline steps Configuration
hardening rpm

1.2.2. Installation

Installing MongoDB


Stream requires at least MongoDB version 4.4.2. For support reasons, EVERTRUST
recommends to use the latest available version, which is MongoDB 8 at the time of
writing.

Stream relies on MongoDB to store its data, whether it be configuration elements or certificate data.
The necessary packages are mongodb-org-server, mongodb-mongosh, mongodb-org-tools, mongodb-
database-tools and mongodb-org-database-tools-extra. To install and configure MongoDB on a
Redhat-based OS, follow these steps using an account with administrative privileges:

Installation with Internet Access

These steps are for when the server has internet access

1. Follow step 1 of the official MongoDB installation tutorial.

2. Run the following command to install the RPMs:

yum install -y mongodb-org-server mongodb-mongosh mongodb-org-tools mongodb-org-
database-tools-extra mongodb-database-tools

Installation without Internet Access

1. Download the .rpm files directly from the MongoDB repository. Downloads are organized by Red
Hat / CentOS version (e.g. 8 - do not select the Server folders), then MongoDB release version (e.g.

2

https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-red-hat/
https://repo.mongodb.org/yum/redhat/

8.0), then architecture (e.g. x86_64). Upload the files to the server.

2. Run the following command to install the RPMs:

yum localinstall mongodb-org-server-x.y.z.arch.rpm mongodb-mongosh-x.y.z.arch.rpm
mongodb-org-tools-x.y.z.arch.rpm mongodb-org-database-tools-extra-x.y.z.arch.rpm
mongodb-database-tools-x.y.z.arch.rpm

Common installation steps

3. Enable the service at startup with the following command:

systemctl enable mongod

4. Start the mongod service with the following command:

systemctl start mongod

5. Start the mongosh executable using the following command to check that the database is up and
running:

mongosh

For now, since we did not set up access control, everyone using localhost as DB URI can connect as
administrator, which is something that needs to be prevented before setting-up Stream.


The following section is not mandatory to get Stream up and running, but is highly
recommended for security purposes.

6. In the mongo shell that was just opened, run the following commands:

> use admin;
> db.createUser(
 {
 user: "stream_db_admin",
 pwd: "AComplexPassword",
 roles: [{ role: "dbOwner", db: "stream" }]
 }
)

This way, the created stream_db_admin user has owner permissions on the database named stream.
You can change the stream_db_admin value to what you want to use as database username, the
password to be what you want to use as a database password to match your password policies and
the database name (the value to the db key) to what you want to use as the stream database. For the

3

password, you can also passwordPrompt() (without quotes) as the password value, which will prompt
you for a password upon pressing Enter. Be careful though as this is a password prompt without
confirmation.


If you plan on using special characters in the password, be careful as the MongoDB
engine has trouble with some of them. For more information on this topic, please
refer to the MongoDB documentation.

7. Edit the /etc/mongod.conf file and add the following section at the end:

security:
 authorization: enabled

setParameter:
 enableLocalhostAuthBypass: false

These options will prevent anonymous login to the MongoDB instance and will disable the localhost
bypass.

8. Restart the MongoDB daemon to make the changes effective:

systemctl restart mongod

9. When setting up Stream, use this connection string as the MongoDB URI :

mongodb://stream_db_admin:AComplexPassword@127.0.0.1:27017/stream?authSource=admin

If you used another username for the MongoDB user, replace the stream_db_admin part with the
username that you used. Replace the AComplexPassword in the URI by the password that you chose
when creating the account.
Replace /stream in the URI by /databaseName if you chose to use another name for your Stream
database when creating the user.

Installing NGINX


In order to install Stream, the server must have access to a repository (mirror, ISO
file, …) of the linux distribution you are using in order to be able to install the
dependencies of the software.

1. Connect to the server with an account with administrative privileges;

2. Install the NGINX web server using the following command:

yum install nginx

4

https://www.mongodb.com/docs/manual/reference/connection-string/#components

3. Enable NGINX to start at boot using the following command:

systemctl enable nginx

4. Stop the NGINX service with the following command:

systemctl stop nginx

Installing Stream



In order to install Stream, the server must have access to a repository (mirror, ISO
file, …) of the linux distribution you are using in order to be able to install the
dependencies of the software. Stream package has the following dependencies:

• dialog

• java-17-openjdk-headless

• tzdata-java

Please note that these packages may have their own dependencies.

Installation from the EverTrust repository

Create a /etc/yum.repos.d/stream.repo file containing the EverTrust repository info:

[stream]
enabled=1
name=Stream Repository
baseurl=https://repo.evertrust.io/repository/stream-rpm/
gpgcheck=0
username=<username>
password=<password>

Replace <username> and <password> with the credentials you were provided.

You can then run the following to install the latest Stream version:

yum install stream

To prevent unattended upgrades when running yum update, you should pin the Stream version by
adding

exclude=stream

5

at the end of the /etc/yum.repos.d/stream.repo file after installing Stream.

Installing from RPM

Download the latest RPM for version 2.1 on the Official EVERTRUST repository.

Upload the file 'stream-2.1.x-1.x86_64.rpm' to the server;

Access the server with an account with administrative privileges;

Install the Stream package with the following command:

yum localinstall /root/stream-2.1.x-1.x86_64.rpm

Installing Tinkey



In order to install Tinkey, the server must have access to a repository (mirror, ISO
file, …) of the linux distribution you are using in order to be able to install the
dependencies of the software. Tinkey package has the following dependencies:

• java-17-openjdk-headless

Please note that these packages may have their own dependencies.

Installation from the EverTrust repository

Create a /etc/yum.repos.d/tinkey.repo file containing the EverTrust repository info:

[tinkey]
enabled=1
name=Tinkey Repository
baseurl=https://repo.evertrust.io/repository/tinkey-rpm/
gpgcheck=0
username=<username>
password=<password>

Replace <username> and <password> with the credentials you were provided.

You can then run the following to install the latest Tinkey version:

yum install tinkey

To prevent unattended upgrades when running yum update, you should pin the Tinkey version by
adding

exclude=tinkey

6

https://repo.evertrust.io/repository/stream-rpm/

at the end of the /etc/yum.repos.d/tinkey.repo file after installing Tinkey.

Installing from RPM

Download the latest RPM for tinkey on the Official EVERTRUST repository.

Upload the file 'tinkey-<latest>.noarch.rpm' to the server;

Access the server with an account with administrative privileges;

Install the Tinkey package with the following command:

yum localinstall /root/tinkey-latest.noarch.rpm

1.2.3. Configuration

Initial Configuration

Introduction

This section assumes that Stream is running in a confined environment: nobody but the person
performing the configuration operation and the key ceremony stakeholders should have access to
Stream yet, and they should do so under the supervision of a security officer.

Selinux should be disabled during the initial configuration and bootstrapping operations. It will be
re-enabled following the security guidelines.

setenforce Permissive

To ensure that it is permissive, run the following command

getenforce

This should return Permissive

Configuring the firewall



In order for Stream to work properly, the following ports are used:

• Exposed: 443 for HTTPS access to the product (through the web interface or
through the API);

• Exposed: 80 for HTTP access to the product only to retrieve CRLs (the only
allowed endpoint must be /crls/*, this is the case for the default NGINX
configuration);

• Internal: 25520 and 7626 for high-availability configurations through the Pekko

7

https://repo.evertrust.io/repository/tinkey-rpm/

framework.

• Internal: 9000 for the Stream API.

Connect to the server with an account with administrative privileges;

Open port TCP/443 on the local firewall with the following command:

firewall-cmd --permanent --add-service=https

Stream also needs HTTP traffic allowed since it is required to set up the CRLDPs :

firewall-cmd --permanent --add-service=http

To make the change effective, you need to restart the firewall service:

systemctl restart firewalld

Enable the service at startup with the following command:

systemctl enable firewalld

Generating a Tink keyset

To protect its secrets, Stream relies on Tink. A Tink keyset can be issued as:

• A plaintext keyset (stored as a file, protected by the filesystem rights and SELinux);

• A GCP keyset (protected by a master key in a GCP KMS);

• An AWS keyset (protected by a master key in an AWS KMS).

• A PKCS#11 keyset (protected by a master key in an HSM).

 In order to generate a keyset, the Tinkey tool must be installed.

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select 'Stream':

8

https://developers.google.com/tink

In the Stream menu, select 'STREAM_TINK_KEYSET':

Generating a plaintext keyset

In the Tink Keyset Generation menu, select 'PLAINTEXT':

The keyset will be generated automatically. For the changes to take effect, you must restart the
Stream service by running:

systemctl restart stream

9

Generating a GCP protected keyset

In the Tink Keyset Generation menu, select 'GCP':

The URL of the GCP master key must be typed in the menu.

After pressing OK, the keyset will be generated automatically. For the changes to take effect, you
must restart the Stream service by running:

systemctl restart stream

Generating an AWS protected keyset

In the Tink Keyset Generation menu, select 'AWS':

The URL of the AWS master key must be typed in the menu.

After pressing OK, the keyset will be generated automatically. For the changes to take effect, you
must restart the Stream service by running:

systemctl restart stream

10

Generating a PKCS#11 protected keyset

In the Tink Keyset Generation menu, select 'PKCS11':

The URL of the PKCS#11 master key must be typed in the menu.

The expected format is:

pkcs11://object=<object name>;type=<object type>;slot-id=<slot id>?module-
path=<library path>&pin-value=<pin>;

Example:

pkcs11://object=kek;type=secret-key;slot-id=-1?module-
path=/usr/lib/softhsm/libsofthsm2.so&pin-value=1234";

After pressing OK, the keyset will be generated automatically. For the changes to take effect, you
must restart the Stream service by running:

systemctl restart stream

11

Generating a Play secret

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select 'Pekko_Play':

In the Pekko_Play menu, select 'SECRET':

Validate the new Stream Application Secret:

The Stream configuration is updated:

12

For the changes to take effect, you must restart the Stream service by running:

systemctl restart stream

13

JVM Configuration

Stream allows you to configure the Xms (minimum memory allocation pool) and Xmx (maximum
memory allocation pool) parameters of the JVM running Stream using the configuration tool.

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the configuration menu, select Stream:

In the Stream configuration menu, Select JVM:

Specify the 2048 for xms and 3072 for xmx parameters and select 'OK':

The new JVM parameters are configured.

14

For the changes to take effect, you must restart the Stream service by running:

systemctl restart stream

15

MongoDB URI Configuration

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select Stream:

In the Stream configuration menu, Select MONGODB_URI:

Specify the MongoDB URI to target your MongoDB instance:



Stream is installed to target a local MongoDB instance by default.

If you use an external MongoDB (such as MongoDB Atlas Database or dedicated
On-premises database) instance:

16

• Create a user with "read/write" permissions on your MongoDB instance;

• Create a replicaSet if using a MongoDB cluster;

• Specify a MongoDB URI that does match your context.

External MongoDB database URI syntax

mongodb+srv://<user>:<password>@<hostname>:<port>/stream

External MongoDB cluster of databases URI syntax

mongodb+srv://<user>:<password>@<hostname1>:<port1>,<hostname-
2>:<port2>/stream?replicatSet=<replicaset>&authSource=admin

The MongoURI is configured.

For the changes to take effect, you must restart the Stream service by running:

systemctl restart stream

17

Stream Hostname Configuration

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select Stream:

In the Stream configuration menu, Select STREAM_HOSTNAME:

Specify the DNS FQDN by which Stream will be accessed:

The Stream Hostname is configured:

18

For the changes to take effect, you must restart the Stream service by running:

systemctl restart stream

19

Generating an event seal secret

Stream will generate functional events when using the software.

These events are typically signed and chained to ensure their integrity. Therefore, you must specify
a sealing secret for this feature to work properly.

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select 'Stream':

In the Stream menu, select 'STREAM_SEAL_SECRET':

Validate the new event seal secret:

20

The even seal secret is now configured:

For the changes to take effect, you must restart the Stream service by running:

systemctl restart stream

21

Installing the Stream license


You should have been provided with a stream.lic file. This file is a license file and
indicates an end of support date.

Upload the stream.lic file (using SCP or other means) under /tmp/stream.lic;

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select Stream:

In the Stream configuration menu, Select STREAM_LICENSE:

Specify the path /tmp/stream.lic and validate:

22

The Stream License is configured:

For the changes to take effect, you must restart the Stream service by running:

systemctl restart stream

23

Installing Stream on a cluster of servers


This section must not be followed if you plan on deploying Stream in standalone
mode (vs cluster mode). WARNING: This section does not explain how to install
Stream on a Kubernetes cluster. Please refer to the dedicated section.

In the main menu, select 'Pekko_Play':

In the Pekko_Play menu, select 'PEKKO_HA':

In this menu, specify either the IP address or the DNS name for each server that will be running
Stream on this cluster with pekko management port, as well as the local node index (the number of
the node that you are configuring at that moment).


Note that the local node index must match the current node hostname or IP
parameter:

24

Save your changes from the menu.

The High Availability mode is now configured on the current node:

You must now configure your other nodes, but because they belong to the same cluster they need to
share the same pekko play secret, the same stream licence, the same stream seal secret, the
same stream hostname, the same mongo database, the same x509 enforcing and the same
stream tink keyset. In order to be able to do that, you need to copy the configuration file that was
generated by the stream-config app, named /etc/default/stream and paste it on each one of your
nodes;

Then on each other node, run the Stream Configuration utility with the following command:

$ /opt/stream/sbin/stream-config

25

In the Pekko_Play menu, select 'PEKKO_HA':

Here, you need to change the local node index to match the hostname of the node that you are
configuring:

26


You will need to import the Stream licence file on each node manually, following
the guidelines of section Installing the Stream license.

Additionally, on each node, you will need to open the ports used for Pekko_HA and Pekko_MGMT,
which are by default 25520 and 7626:

$ firewall-cmd --permanent --add-port=25520/tcp
$ firewall-cmd --permanent --add-port=7626/tcp

Reload the firewall configuration with:

$ systemctl restart firewalld

Restart the Stream service on each one of the nodes:

$ systemctl restart stream

Enabling the lease

To allow for High Availability even when a minority of nodes are up, the following configuration
should be added (reference).

pekko.cluster.split-brain-resolver {
 active-strategy = "lease-majority"
 lease-majority {
 lease-implementation = "lease.mongo"
 }
}

27

Bootstrapping EverTrust Stream

Installing a bootstrap certificate

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select 'NGINX':

In the NGINX menu, select 'BOOTSTRAP':

Specify the DNS Name of the Stream server (the same that you used as Stream hostname
previously):

The self-signed certificate is going to be generated and automatically installed for Nginx to use
directly:

28


This certificate is meant to be used to bootstrap Stream and should be replaced as
quickly as possible as it is highly unsecured.

29

Starting the services

Assuming that all prior configuration operations have been performed as documented in the
installation guide and that a bootstrap certificate has been installed as explained in the previous
section, the services must be started:

1. Connect to the server with an account with administrative privileges;

2. Start the stream service with the following command:

systemctl start stream

3. Verify the NGINX configuration with the following command:

nginx -t

4. Restart the NGINX service with the following command:

systemctl restart nginx

Retrieving initial password

For the first log-in, you must find the administrator password in the
/opt/stream/var/run/adminPassword file.

The default administration login is administrator.

Accessing the Stream Web Interface

1. Launch a web browser;

2. Browse to https://[IP or DNS Name of the Stream component]/ui#:

3. When prompted with a security issue, click on the button to accept the risks and proceed
anyway. This alert is raised by the use of the self-signed certificate.

4. Specify the default administration credentials and hit the 'Login' button:

30


It is highly recommended to delete the adminPassword file from your machine once
you saved it somewhere safe.

Initial Key Ceremony

Before deploying to production, the initial key ceremony should take place

Configure a keystore

To protect the keys, keystores (cloud or physical) should be configured. Follow the Administration

Guide steps in Managing Keystores & Keys › Keystores in Stream to configure your Keystore.

Create keys

A key should be created for each Certification you wish to add. The keys can be generated
externally, or using Stream.

Key creation steps depend on the type of keystore:

• KMS:
KMS keys can be created using Stream following the Administration Guide steps in Managing

Keystores & Keys › Managing keys in Stream › Cloud KMS or directly in the KMS following
your KMS documentation.

• Software Keystore:
Software keys can be created using Stream following the Administration Guide steps in

Managing Keystores & Keys › Managing keys in Stream › Software keystore.

• Hardware Security Module:
HSM keys can be created using Stream following the Administration Guide steps in Managing

31

Keystores & Keys › Managing keys in Stream › PKCS#11 HSM. Please note that extra steps may
be required at HSM level depending on the model of HSM used.

Once the keys have been created, they should appear in the keystore on Stream after a refresh.

Create your Certification Authorities

Once keys have been created the Certification Authorities can be created following the
Administration Guide steps in Managing Certification Authorities.

Finalizing Stream Configuration

Configuring Stream default templates

If you intend to use Stream as your certification authority, default templates should be created.

As Stream is template-oriented, default templates will be used when enrolling certificates.

Two templates are considered as defaults:

• A tlsClient template for TLS client certificates

• A tlsServer template for TLS server certificates

To create these templates:

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select 'Stream':

In the Stream menu, select 'STREAM_DEFAULT_TEMPLATE':

32

The templates are automatically created and available in Certificates › Templates.


mongosh must be installed and the mongo URI configured for this configuration to
work

Installing a Server Authentication Certificate

Issuing a Certificate Request (PKCS#10)

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select 'NGINX':

In the NGINX menu, select 'CSR':

33

Specify the DNS Name of the Stream server (the same that you used as Stream hostname
previously):

34

The certificate request is generated and available under '/etc/nginx/ssl/stream.csr.new':

35

Signing the certificate

The CSR generated at the previous steps must then be signed using an existing PKI. If you do not
have an existing PKI, please refer to the Key Ceremony Documentation to create one.

Sign using Stream


This step assumes that the Key Ceremony already happened, i.e the operational
CAs are imported into Stream as managed CAs.

1. Access Stream’s web administration console and log in using the default administration
credentials that were obtained at this section;

2. Browse to 'Certificates > Enroll';

3. Fill in the following information:

• CA to enroll on: Select the CA that is issuing the server certificates for your organization;

• Template to enroll on: Select the certificate template that was created at this step that should be
named 'tlsServer';

• CSR type: Select 'File', then click the paper clip icon and import the CSR that was generated at
this step;

Then click 'Enroll':

You can retrieve the enrolled certificate in PEM format from the 'Certificates > Search' : download
this certificate in PEM

Sign using an external Certification Authority

 The certificate must have the serverAuthentication Extended Key Usage

You will need to provide your certificate authority with the /etc/nginx/ssl/stream.csr.new file that
was generated at the previous step.

36

Installing the Server Certificate

Upload the signed server certificate (in PEM format) on the Stream server under /tmp/stream.crt
(using SCP or other means);

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the NGINX configuration menu, select 'CRT':

Specify the path /tmp/stream.crt and validate:

The server certificate is successfully installed:

37

Installing the Server Certificate Trust Chain


You must follow this section only if you signed the server certificate with an
existing PKI. If you self-signed the server certificate, you do not need to follow this
step.

Upload the server certificate trust chain (the concatenation of the Certificate Authority certificates
in PEM format) on the Stream server under /tmp/stream.bundle (using SCP or other means);


The bundle should contain only the Certificate Authority certificates in PEM
format and NOT the server certificate

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the NGINX configuration menu, select 'TC':

Specify the path /tmp/stream.bundle and validate:

The server bundle is successfully installed:

38

39

Verify the NGINX configuration with the following command:

nginx -t

Restart the NGINX service with the following command:

systemctl restart nginx

Configuring administrator certificate authentication

To authenticate as administrator on stream using a certificate, it is possible to either use a
certificate generated on Stream, or to use an external certificate.

Issuing a Certificate Request (PKCS#10)

Generating the CSR on Windows

1. Press 'Windows Key + R' then type 'certmgr.msc' and press enter;

2. Expand 'Personal' then double click 'Certificates';

3. In the top bar, click 'Action > All Tasks > Advanced Operations > Create custom requests':

4. On the 'Before You Begin' and the 'Select Certificate Enrollment Policy' screens, click 'Next';

5. In the 'Custom request' window, select 'CNG Key' in the template drop-down menu and 'PKCS#10'
as the request format, then click 'Next':

40

6. In the 'Certificate Information' window, click 'Details' then 'Properties':

7. In the 'Certificate Properties' pop-up that opened:

• General tab: Leave everything as default

• Subject tab: In the subject name category enter the DN using the standard DN format then click
Add:


It is recommended for a certificate DN to contain at least a CN, OU, O and C
element

41

• Extensions tab: Leave everything as default

• Private Key tab: Expand 'Key options' and select '2048' for the key size, then expand 'Select Hash
Algorithm' and select 'sha256' for the hash algorithm:

Click apply, then OK, then Next;

8. In the next window, select a place to save the CSR and select 'Base64' as File format, then click
'Finish':

42

Generating the CSR on Linux/MacOS

1. Start a shell instance;

2. Run the following command, replacing the DN with your information:

$ openssl req -new -newkey rsa:2048 -subj "/CN=LASTNAME Firstname/C=FR/OU=.../"
-keyout ./stream_admin.key -out ./stream_admin.csr

This command will prompt you for a password to encrypt the CSR private Key


It is recommended for a certificate DN to contain at least a CN, OU, O and C
element

Signing the certificate

Using a Stream-signed certificate


This step assumes that the Key Ceremony already happened, i.e the operational
CAs are imported into Stream as managed CAs.

1. Access Stream’s web administration console and log in using the default administration
credentials that were obtained at this section;

2. Browse to 'Certificates > Enroll';

3. Fill in the following information:

• CA to enroll on: Select the CA that is issuing the user certificates for your organization. Note that
it must have the 'Is trusted for client authentication' switch turned on in the interface;

• Template to enroll on: Select the certificate template that was created at this step that should be
named 'tlsClient';

• CSR type: Select 'File', then click the paper clip icon and import the CSR that was generated at

43

this step;

Then click 'Enroll':

You can retrieve the enrolled certificate in PEM format from the 'Certificates > Search' : download
this certificate in PEM

Using an external-signed certificate


The certificate must contain the clientAuthentication Extended Key Usage in order
to be used as an authentication certificate on Stream

Trusting the issuing CA for client authentication

In order for the client authentication certificate to work as intended, the issuing CA must be trusted
for client authentication on Stream.

• If your certificate was signed by a Stream managed CA:

Browse to Certification Authorities › Managed CAs, select your Issuing CA and toggle on 'Is
trusted for client authentication'

• If your certificate was signed by an external CA:
If your CA is not yet imported, import it using the administration guide steps in Managing

Certification Authorities › Importing an External Certification Authority.

Browse to Certification Authorities › External CAs, select your Issuing CA and toggle on 'Is
trusted for client authentication'

Creating the SuperAdmin role in Stream

At this point, you should be logged into the Stream web administration console with the default
administrator account.

1. Go to Security > Roles and click ;

2. Fill-in the following information:

44

• Name: SuperAdmin;

• Description : Super administrator role that has all rights on Stream. Use with caution;

• Configuration permissions : Click the '+' button then click on 'Section' and select 'All
permissions of all type' and click the 'Add' button;

• Lifecycle permissions : Click the '+' button, then :

◦ Click on 'CA' and select 'All';

◦ Click on 'Template' and select 'All';

◦ Click on 'Rights' and select 'All';

◦ Click the 'Add' button.

3. Click the 'Save' button at the top of the page.

The SuperAdmin role is now created.

Giving the SuperAdministrator role to the certificate

1. Access Stream’s web administration console and log in using the default administration
credentials that were obtained at this section;

2. Browse to 'Security > Authorizations' then click and select 'Add authorization manually';

3. Import a certificate by clicking on certificate button ;

4. Once the identifier has been filled with the certificate DN click the 'Add' button;

4. Click the 'Add role' button and select the 'SuperAdmin' role previously created from the drop
down menu;

5. Click the 'Save' button at the top of the page;

Now the PEM certificate has the SuperAdmin permission in Stream.

Creating a PKCS#12 file from the private key and the PEM

This step can only be done using OpenSSL.

1. Connect to the server with an account with administrative privileges;

2. Upload the PEM of the certificate you used to create the SuperAdmin user at the previous step in
the same folder where the private key that was used to generate the CSR was created in;

3. Run the following command:

$ openssl pkcs12 -export -inkey ./stream_admin.key -in ./stream_admin.pem -name
StreamAdministrator -out ./stream_admin.p12

This will create a PKCS#12 file containing the PEM of the certificate and its private key in PKCS#8

45

format (encrypted). The previous utility will first ask the private key file pass phrase and then ask
for a passphrase to protect the PKCS#12.


If using an openssl version greater than 3, you will need to add -legacy at the end
of the command as the new version of the PKCS#12 is not wisely supported.

4. Import this .p12 file into your certificate store or the certificate store of your browser if it has one
(ex: Firefox). At the import, you should be prompted to enter the passphrase that you used to
encrypt the PKCS#12.

Now you should have the certificate imported and ready to be used.

When going to the Stream web interface while not being logged in, your web browser should
prompt you for a certificate to use and you should be able to select the one that you imported just
now.

Removing the administrator local account


Before deleting the account, ensure that your administrator certificate is working
as intended.

1. Access Stream’s web administration console and log in using the client certificate that was set-up
at the previous step;

2. Browse to 'Security > Local accounts';

3. Click the bin icon next to the 'administrator' account and confirm deletion.


After reviewing the [install-guide:iaas-security:::_security_guidelines], Stream is
ready to leave its confined environment.

1.2.4. Security Guidelines

The following content are guidelines to have a secure Stream installation.

Stream should run on a dedicated machine.From this fact, all unused packages should be removed
from the machine.The system should have been installed following the security guidelines
recommended by the operating system vendor.

The following requirements should be met:

• SELinux should be enabled

• The stream-hardening rpm should be installed

• Privileged Access Management or SSH/Sudoers should be set up

• The firewall should be enabled and ports 80 and 443 allowed

• Only certificate authentication should be enabled once the product has been initialized and the
initial Key Ceremony phase performed

46

• The NGINX configuration should be modified following the below procedure

• Stacktrace logging in events should be disabled

On top of that, though it is not mandatory, it is recommended to set up other security-related
solutions, such as a Web Application Firewall, an Intrusion Detection System and a Security
Information and Event Management.

All the following steps should be followed to ensure compliance if they are not already
implemented with the above requirements, and should be done with an account with
administrative privileges.

SELinux

To enhance security, SELinux should be enabled.

setenforce Enforcing

To ensure that it is enabled, run the following command

getenforce

This should return Enforcing

Install the stream-hardening rpm

Follow the same steps as in [install-guide:iaas-installation-stream:::_installing_stream] but for the
stream-hardening rpm.

Once the rpm is installed, a system reboot is necessary. The following command can be used:

reboot now



In order to install the stream hardening policies, the server must have access to a
repository (mirror, ISO file, …) of the linux distribution you are using in order to
be able to install the dependencies of the software. The stream-hardening package
has the following dependencies:

• stream

• policycoreutils-python-utils

Please note that these packages may have their own dependencies.

Sudoers

To administrate Stream without using the root user, stream-hardening rpm creates a stream-

47

administrator group with sudoers permissions.

Create a new user with stream-administrator and stream groups, for instance, user-admin.

useradd -G stream-administrator,stream user-admin
passwd user-admin

Link user-admin to the selinux sysadm_u user

semanage login -a -s sysadm_u -rs0:c0.c1023 user-admin


The semanage command is available with the policycoreutils-python-utils
package.

Relabel the user-admin user home folder with the following command

restorecon -FR -v /home/user-admin

In case you need to access the user-admin user account via ssh you will need to set the selinux
ssh_sysadm_login boolean

setsebool -P ssh_sysadm_login on

 The setsebool command is available with the policycoreutils package.

Now the user-admin can:

• Manage MongoDB server with systemctl

• Manage nginx server with systemctl

• Manage stream server with systemctl

• Execute every script under the folder /opt/stream/sbin/ as a root user

Configuring the Firewall

The firewall should have been configured at the setup step.

In addition to this configuration, the https (443) access should be restricted to :

• The Stream administrators

• External components using Stream certificate lifecycle capabilities (Stream for example)


Firewalld sometimes has default ports allowed. No other ports than those
referenced in the setup step should be allowed.

48

X509 Enforcing

In order to improve security once an administration certificate has been emitted, all authentication
modes should be disabled apart from certificate authentication.

To do that, please follow the dedicated steps in the security section of the administration guide :

Managing Security › Enforce Certificate Authentication

NGINX Configuration

In order to improve security, the default NGINX configuration should be altered. In the
configuration file in /etc/nginx/nginx.conf, the server instruction block containing the listen 80
instruction should be deleted or commented.

Once an administration certificate has been emitted, the /opt/stream/etc/stream-httpd.conf should
be updated. The following line

ssl_verify_client optional_no_ca;

should be replaced by the lines

ssl_verify_client on;
ssl_client_certificate ssl/client-trusted-cas.pem;
ssl_trusted_certificate ssl/trusted-cas.pem;
ssl_crl ssl/crl-bundle.pem;

This ensures only valid and trusted certificates can be used to authenticate on the Stream server.

For the following example chain :
Root CA → Client Issuing CA 1
Root CA → Client Issuing CA 2

The /etc/nginx/ssl/client-trusted-cas.pem file should contain the PEM certificates of the CAs
trusted for client authentication, concatenated one after the other. It should look like:

-----BEGIN CERTIFICATE----
<Client Issuing CA 1 PEM>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE----
<Client Issuing CA 2 PEM>
-----END CERTIFICATE-----

The /etc/nginx/ssl/trusted-cas.pem file should contain the PEM certificates of the chain to the CAs
trusted for client authentication, concatenated one after the other. It should look like:

-----BEGIN CERTIFICATE----

49

<Root CA PEM>
-----END CERTIFICATE-----

Both these files should have the following permissions:

chmod 640 /etc/nginx/ssl/trusted-cas.pem
chmod 640 /etc/nginx/ssl/client-trusted-cas.pem
chown root:nginx /etc/nginx/ssl/trusted-cas.pem
chown root:nginx /etc/nginx/ssl/client-trusted-cas.pem

To update the CRL, the /opt/stream/etc/crl-fetching.conf configuration file (installed with the
stream-hardening rpm) should be customized

Uncomment and edit the following line
CRL_URLS=("<CRL URL 1>" "<CRL URL 2>")
CRL_DOWNLOAD_PATH="/etc/nginx/ssl/tmp.crl"
CRL_PEM_PATH="/etc/nginx/ssl/tmp.crl.pem"
TMP_CRL_BUNDLE_PATH="/etc/nginx/ssl/tmp.crl.bundle"
NGINX_CRL_BUNDLE_PATH="/etc/nginx/ssl/crl-bundle.pem"

To customize this file, after the # Uncomment and edit the following line comment, the CRL_URLS line
should be uncommented and edited to have each of your CRLs URLs.


ALL of your CAs present in the /etc/nginx/ssl/trusted-cas.pem and
/etc/nginx/ssl/client-trusted-cas.pem files must have their CRL downloaded.

 CRL are expected in DER format.



To fetch the CRL on stream first follow Managing Certificate Revocation Lists ›
Configuring Certificate Revocation Lists for a Managed CA in the
administration guide, the CRL path is http://localhost:9000/crls/<your CA
Technical Name>

The following file should then be put in /etc/cron.d/nginx-crl

This cron runs every 5 minutes and execute a script replacing the CRL file for NGINX
*/5 * * * * root /opt/stream/sbin/crl-fetching

Stacktraces management

Stacktraces in the functional logs can give a lot of information about the technical architecture of
the application. To disable their logging, set the parameter stream.event.disable-stacktrace to true
following the steps in the Overridable configuration parameters section of the administration
guide.

50

 Stacktraces are still available in the technical logs.

1.2.5. Upgrade

Upgrade the Stream installation

The first step in the upgrade procedure is to upgrade the Stream component itself.

If Stream was installed using a repository

If you installed Stream using our repository (as described in the installation section), you should:

• Unpin the Stream version by commenting out any line excluding the stream package in the
/etc/yum.repos.d/stream.repo repository file :

[stream]
enabled=1
name=Stream Repository
exclude=stream

• Run yum update stream

Don’t forget to pin the version again by uncommenting the line that was previously commented.

If Stream was installed manually

You must retrieve the latest Stream RPM from the EverTrust repository manually using the user
credentials you were provided.

Connect to the server with an account with administrative privileges;

Install the Stream package with the following command:

yum localinstall stream-2.1.x-1.x86_64.rpm

Upgrade the database schema

Some Stream versions require that you run migration scripts against your database. Stream comes
bundled with an stream-upgrade script that handles this migration logic.

Therefore, after each upgrade, you should run stream-upgrade to check whether new migrations
should be run.

Connect to the server with an account with administrative privileges;

Run the following command:

51

https://repo.evertrust.fr

/opt/stream/sbin/stream-upgrade -t <target version>

In most cases, stream-upgrade can detect the version you’re upgrading from by checking the
database. if the source version is not automatically detected, you will encounter the following
error:

*** Unable to infer the source version from your database. Specify it explicitly with
the -s flag. ***

You’ll have to explicitly tell stream-upgrade which version you are upgrading from. To do that,
simply set the source version explicitly with the -s flag :

/opt/stream/sbin/stream-upgrade -t <target version> -s <source version>

Similarly, stream-upgrade will try to use the MongoDB URI that was configured by the Stream
configuration utility. If it fails to auto-detect your database URI or you wish to migrate another
database, specify the URI explicitly using the -m flag:

/opt/stream/sbin/stream-upgrade -t <target version> -m "<MongoDB connection string>"



The upgrade script requires the mongo shell MongoSH to connect to your database
(mongosh). If this client is not installed on the host where Stream is running,
consider installing the standalone mongosh client or running the upgrade script
from another host that has access to the database.

1.2.6. Uninstallation


Before uninstalling, please ensure that you have a proper backup of the Stream
component. Once uninstalled, all Stream data will be irremediably lost!



Uninstalling Stream consists in uninstalling:

• The Stream service;

• The MongoDB service;

• The NGINX service.

Uninstalling Stream

Connect to the server with an account with administrative privileges;

Uninstall Stream with the following commands:

52

systemctl stop stream
yum remove stream
rm -rf /opt/stream
rm -rf /var/log/stream
rm -f /etc/default/stream

Uninstalling NGINX

Connect to the server with an account with administrative privileges;

Uninstall NGINX with the following commands:

systemctl stop nginx
yum remove nginx
rm -rf /etc/nginx
rm -rf /var/log/nginx

53

Uninstalling MongoDB

Connect to the server with an account with administrative privileges;

Uninstall MongoDB with the following commands:

systemctl stop mongod
rpm -qa | grep -i mongo | xargs rpm -e
rm -rf /var/log/mongodb
rm -rf /var/lib/mongodb

1.3. Installing on Kubernetes

1.3.1. Installation

Concepts overview

In Kubernetes, applications are deployed onto Pods, which represents a running version of a
containerized application. Pods are grouped by Deployments, which represent a set of Pods
running the same application. For instance, should you need to run Stream in high availability
mode, your deployment will contain 3 pods or more. Applications running in Pods are made
accessible by a Service, which grants a set of Pods an IP address (which can either be internal to
the cluster or accessible on the public Internet through a Load Balancer).

The recommended way of installing on Stream is through the Stream’s Helm Chart. Helm is a
package manager for Kubernetes that will generate Kubernetes resources necessary to deploy
Stream onto your cluster. The official Helm Chart will generate a deployment of one or more Pods
running Stream on your cluster.

Setting up Helm repository

Now that the application secrets are configured, add the EverTrust Helm repository to your
machine:

$ helm repo add evertrust https://repo.evertrust.io/repository/charts

Verify that you have access to the Chart :

$ helm search repo evertrust/stream
NAME CHART VERSION APP VERSION DESCRIPTION
evertrust/stream 0.2.0 2.0.0 EverTrust Stream Helm chart

54

Configuring the namespace

For isolation purposes, we strongly recommend that you create a dedicated namespace for Stream:

$ kubectl create namespace stream

The namespace should be empty. In order to run Stream, you’ll need to create two secrets in that
namespace:

• A data secret containing your Stream license file and keyset.

• An image pull secret, allowing Kubernetes to authenticate to the EverTrust’s container
repository

Creating the application secrets

You should have both a license file (most probably named stream.lic) and a keyset for your Stream
installation.

To generate a keyset, download our keyset utility onto a secure environment that has access to your
cluster. Extract the archive and run the binary that matches your architecture. For instance :

$./tinkey-darwin-arm64 generate-keyset --out=keyset.json

Then, create a Kubernetes secret containing both files into the Stream namespace :

$ kubectl create secret generic stream-data \
 --from-file=license="<path to your license file>" \
 --from-file=keyset="<path to your keyset file>" \
 --namespace stream

Creating the image pull secret

Next, you should configure Kubernetes to authenticate to the EverTrust repository using your
credentials. They are necessary to pull the Stream docker image, you should have received them
upon purchase. Get your username and password and create the secret:

$ kubectl create secret docker-registry evertrust-registry \
 --docker-server=registry.evertrust.io \
 --docker-username="<your username>" \
 --docker-password="<your password>" \
 --namespace stream

Configuring the chart

You’ll next need to override the defaults values.yaml file of the Helm Chart to reference the secrets

55

https://github.com/evertrust/tinkey/releases/latest

that we’ve created. We’ll provide a minimal configuration for demonstration purposes, but please
do follow our production setup guide before deploying for production.

Create a override-values.yaml file somewhere and paste this into the file:

image:
 pullSecrets:
 - evertrust-registry

license:
 secretName: stream-data
 secretKey: license

keyset:
 secretName: stream-data
 secretKey: keyset

To finish Stream’s installation, simply run the following command:

$ helm install stream evertrust/stream -f override-values.yaml -n stream

Please allow a few minutes for the Stream instance to boot up. You are now ready to go on with the
first login. This instance will allow you to test out if Stream is working correctly on your cluster.
However, this installation is not production-ready. Follow our production checklist to make sure
your instance is fit to run in your production environment.

1.3.2. First login

Fetching the default administrator password

Allow a few seconds for your Stream instance to boot up. You can then fetch the administrator
password that has been generated for your instance using the command :

$ kubectl exec $(kubectl get pods -n stream -l "app.kubernetes.io/name=stream" --sort
-by={.status.podIP} -o jsonpath="{.items[0].metadata.name}") -n <namespace> -- /bin/sh
-c "cat /stream/adminPassword"



The default administrator credentials are:

• Login: administrator

• Password: the one you got from the command above

Manually creating the initial user

In case the automatic bootstrap process was disabled, you may need to manually create an

56

administrator user. Launch a MongoDB shell to access your database and run the following
command to create the initial administrator:

db.security_accounts.insertOne({"identifier":"administrator","secret":"$6$96ZV/UmX1oMP
UVA3$U5MejjbJ9S3jhqq1TDqhZMwVOcDX5BAWY3DL2nsxUHlpHj0LOfPuswy4nWjkMLify4FvKGKhEfADzljy7
FGc8.","permissions":[{"value":"configuration:*"},{"value":"lifecycle:*"}],"roles":[],
"type":"local"})

Accessing the Stream Web Interface

1. Launch a web browser;

2. Browse to https://[IP or DNS Name of the Stream component]/ui#:

3. Specify the default administration credentials and hit the 'Login' button:


It is highly recommended to delete the adminPassword file from your machine once

57

you saved it somewhere safe.

1.3.3. Production checklist

Even though the Helm Chart makes installing Stream a breeze, you’ll still have to set up a few
things to make Stream resilient enough to operate in a production environment.

Operating the database

All persistent data used by Stream is stored in the underlying MongoDB database. Therefore, the
database should be operated securely and backed up regularly.

When installing the chart, you face multiple options regarding your database:

• By default, a temporary MongoDB instance will be spawned in your cluster, using the mongo
image. No additional configuration is required but it is not production ready out of the box.

• If you want to use an existing MongoDB instance, provide the externalDatabase.uri value. The
URI should be treated as a secret as it must include credentials:

externalDatabase:
 secretName: <secret name>
 secretKey: <secret key>

The chart doesn’t manage the database. You are still in charge of making sure that the database is
correctly backed up. You could either back up manually using mongodump or use a managed service
such as MongoDB Atlas, which will take care of the backups for you.

Managing secrets

Storing secrets is a crucial part of your Stream installation. The keyset is the most import of them,
being a master key used to encrypt and decrypt data before they enter the database. Alongside with
other application secrets like your MongoDB URI (containing your credentials or certificate). We
recommend that you create Kubernetes secrets beforehand or inject them directly into the pod.

Values that should be treated as secrets in this chart are:

Name Description Impact on loss

keyset Master key used to encrypt
sensitive data in database.

Highest impact: database would
be unusable

events.secret Secret used to sign and chain
events.

Moderate impact: events
integrity would be unverifiable

externalDatabase.uri External database URI,
containing a username and
password.

Low impact: reset the MongoDB
password

58

https://www.mongodb.com/atlas

Name Description Impact on loss

appSecret Application secret use to
encrypt session data.

Low impact: sessions would be
reset

mailer.password SMTP server password Low impact: reset the SMTP
password

For each of these values, either :

• leave the field empty, so that a secret will be automatically generated.

• derive the secret value from an existing Kubernetes secret:

appSecret:
 secretName: <secret name>
 secretKey: <secret key>


Always store secrets in a safe place after they’re generated. If you ever uninstall
your Helm chart, the loss of the keyset will lead to the impossibility of recovering
most of your data.

High availability

By default, the chart will configure a single-pod deployment. This deployment method is fine for
testing but not ready for production as a single failure could take down the entire application.
Instead, we recommend that you set up a Stream cluster using at least 3 pods.

In order to do that, configure an horizontalAutoscaler in your override-values.yaml file:

horizontalAutoscaler:
 enabled: true
 minReplicas: 3
 maxReplicas: 3


Use nodeAffinity to spread your Stream cluster Pods among multiple nodes in
different availability zones to reduce the risk of Single Point of Failure.

Configuring ingresses

To create an ingress upon installation, simply set the following keys in your override-values.yaml
file:

ingress:
 enabled: true
 hostname: stream.lab
 tls: true

59

1.3.4. Upgrade

We recommended that you only change values you need to customize in your values.yml file to
ensure smooth upgrading. Always check the upgrading instructions between chart versions.

Upgrading the chart

When upgrading Stream, you’ll need to pull the latest version of the chart :

$ helm repo update evertrust

Verify that you now have the latest version of Stream (through the App version column) :

$ helm search repo evertrust/stream
NAME CHART VERSION APP VERSION DESCRIPTION
evertrust/stream 0.2.0 2.0.0 EverTrust Stream Helm chart

Launch an upgrade by specifying the new version of the chart through the --version flag in your
command :

$ helm upgrade stream evertrust/stream \
 --values override-values.yaml \
 --version 0.2.0

The chart will automatically create a Job that runs an upgrade script when it detects that the Stream
version has changed between two releases. If the upgrade job fails to run, check the job’s pod logs.
When upgrading from an old version of Stream, you may need to explicitly specify the version
you’re upgrading from using the upgrade.from key.


Before upgrading to specific chart version, thoroughly read any Specific chart
upgrade instructions for your version.

Specific chart upgrade instructions

Upgrade to 1.7.0

• Switching to native Kubernetes leases implementation. CRDs leases aren’t used anymore.

Upgrade to 2.0.0

• This version drops support for the Bitnami MongoDB subchart. Instead, a new
temporaryDatabase key controls whether a temporary MongoDB instance should be created for
the duration of the upgrade. To migrate from the Bitnami MongoDB subchart to a temporary
instance or an external MongoDB database, you can use the mongodump and mongorestore utilities.

60

1.3.5. Uninstallation

To uninstall Stream from your cluster, simply run :

$ helm uninstall stream -n stream

This will uninstall Stream. If you installed a local MongoDB instance through the Stream’s chart, it
will also be uninstalled, meaning you’ll lose all data from the instance.


Before uninstalling Stream, if you wish to keep your database, please back up your
application secrets (in particular the keyset). Without it, you won’t be able to
decrypt your database and it will become useless.

1.3.6. Advanced usage

Some edge use-cases might not have been included in the previous installation documentation, for
clarity purposes. You may find some of them below.

Running behind a container registry proxy

If your installation environment requires you to whitelist images that can be pulled by the
Kubernetes cluster, you must whitelist the registry.evertrust.io/stream and
registry.evertrust.io/stream-upgrade images. It is then possible to override the images being
pulled by setting the global.imageRegistry key in your values.yaml file to point to your private
registry:

global:
 imageRegistry: <YOUR-PRIVATE-REGISTRY>

Leases

To ensure clustering issues get resolved as fast as possible, Stream can use Kubernetes leases. We
strongly recommend that you use this safety mechanism. However, the feature can be disabled by
setting the leases.enabled key to false.

1.4. Monitoring

Healthchecks

Liveness check

The liveness check is available on the /alive route of the pekko management port (7626 by default).

It checks that the pekko cluster is operational and performs a ping on the mongo database.

61

https://kubernetes.io/docs/concepts/architecture/leases/

Readiness check

The readiness check is available on the /ready route of the pekko management port (7626 by
default).

It checks that the pekko cluster is operational and verifies that the instance has been bootstrapped.


For RPM configuration, this check is proxied by the default NGINX configuration,
and available on /ready

Metrics

Basic

To enable basic Prometheus metrics on port 9095, the following configuration must be applied.

kamon {
 modules {
 prometheus-reporter.enabled = yes
 apm-reporter.enabled = no
 host-metrics.enabled = no
 jvm-metrics.enabled = no
 }

 prometheus {
 include-environment-tags = true
 embedded-server {
 hostname = 0.0.0.0
 port = 9095
 }
 }
}

Stream

Stream specific metrics can also be exposed on the Prometheus endpoint using this configuration
parameter:

stream.metrics.enabled = true

These metrics include:

• License expiration information

• Stream version

• Scala version

• CRL expiration

62

• CRL generation

• Signer (CA/TSA/OCSP) expiration

• Keystore status

• Credentials expiration

• Last user activity


Additional metrics configuration such as refresh intervals can be found on the
configuration reference page.

1.5. Troubleshooting

Stream Doctor

Stream doctor is a tool that performs checks on your Stream installation as well as its dependencies
to ensure that everything is configured properly. Note that the tool requires root permissions to
run.

Checks performed

At the moment, Stream doctor checks for :

OS checks

• Checks for installed Stream version, MongoDB version, Java version, Nginx Version and OS
version.

◦ If the OS is a RedHat distribution, checks for RedHat subscription

◦ If Mongo is not installed locally, it notices it as an information log

• Checks for SELinux's configuration

◦ If selinux is disabled nothing has to be checked

◦ If selinux is enforced checks the httpd_can_network_connect sebool value

• Checks for the status of the necessary services: mongod, nginx and stream.

• Checks how long the stream service has been running for.

• Checks if there is an NTP service active on the machine and checks if the system clock is
synchronized with the NTP service.

Config checks

• Checks for existence and permissions of the configuration file: the permissions are expected to
be at least 640 and the file is supposed to belong to stream:stream.

• Checks for existence and permissions of the licence file: the permissions are expected to be at
least 640 and the file is supposed to belong to stream:stream.

• Checks for existence and permissions of the keyset file: the permissions are expected to be

63

exactly 600 and the file is supposed to belong to stream:stream.

• Checks for existence and permissions of the Stream directory (default : /opt/stream) : the
permission is expected to be at least 755

• Checks for the existence of the symbolic link for nginx configuration and runs an nginx -t
test.

• Retrieves the Java heap size parameters that were set for Stream and informs the user if the
default ones are used (min = 2048 and max = 3072).

• Retrieves the Stream DNS hostname and raises an error if it has not been set.

• Retrieves the MongoDB URI (throws a warning if MongoDB is running on localhost; throws an
error if MongoDB is running on an external instance but the authSource=admin parameter is
missing from the URI).

• Parses the licence file to retrieve its expiration date.

• Checks for the existence of the file containing the initial administrator password and throws a
warning if that file still exists (displays the password too)

Network checks

• Runs a MongoDB ping on the URI, then checks for the database used in the URI (throws a
warning if the database used is not called stream; throws an error if no database is specified in
the URI).

• Checks for Pekko High Availability settings: if no node hostname is set up, skips the remaining
HA checks. If 2 nodes are set up, retrieves which node is running the doctor and checks for the
other node. If 3 nodes are set up, retrieves which node is running the doctor and checks for the
other 2 nodes. The check runs as:

◦ if curl is installed, runs a curl request on the Node hostname at alive on the management
port (default is 7626), and if alive runs another curl request on the Node hostname at /ready
on the management port. Both requests should return HTTP/200 if ok, 000 otherwise.

◦ if curl is not installed, uses the built-in Linux TCP socket to run TCP SYN checks on both the
HA communication port (default is 25520) and the management port (default is 7626) on the
Node hostname.

• Checks for firewall configuration. Currently only supports firewalld (RHEL) and a netstat test.

◦ The netstat part will run a netstat command to check if the JVM listening socket is active
(listening on port 9000). If netstat is not installed, it will skip this test.

◦ The firewalld part will check if the HTTP and HTTPS services are opened in the firewall and
if it detected a HA configuration, it will check if the HA ports (both of them) are allowed
through the firewalld. If firewalld is not installed or not active, it will skip this test.

• Checks if IPv6 is active on each network interface and raises a warning if it is the case (with the
interface name).

TLS checks

• Checks for existence and permissions of the Stream server certificate file: the permissions are
expected to be at least 640 and the file is supposed to belong to the nginx group.

64

• Parses the Stream server certificate file: it should be constituted of the actual TLS server
certificate first, then of every certificate of the trust chain (order being leaf to root). It throws a
warning if the certificate is self-signed or raises an error if the trust chain has not been
imported. It otherwise tries to reconstitute the certificate trust chain via the openssl verify
command, and throws an error if it cannot.

• Parses the Stream server certificate file and checks if the Stream hostname is present in the
SAN DNS names of the certificate, throws an error if it is not there.

65

Log packing option

If the Stream doctor is launched with the -l option, it will pack the logs of the last 7 days (in
/opt/stream/var/log) as well as the startup logs (the /var/log/stream/stream.log file) and create a tar
archive.

The -l option accepts an optional parameter that should be an integer (1-99) and will pack the logs of
the last n days instead, as well as the startup logs.

Note that the Stream doctor will still perform all of its check; the log packing is done at the very
end of the program.

Example of call to pack the logs of the last 7 days :

/opt/stream/sbin/stream-doctor -l

Example of call to pack the logs of the last 30 days :

/opt/stream/sbin/stream-doctor -l 30

Saving the doctor’s output

If the Stream doctor is launched with the -o option, it will perform all of its checks and save the
output in the specified file instead of displaying it into the stdout (default is the commandline
interface).

If you use the option, you must provide a filepath in a writable directory.

Example of call to save the output in a file named stream-doctor.out instead of the stdout :

/opt/stream/sbin/stream-doctor -o stream-doctor.out

Direct fixes

The Stream doctor is able to fix the following issues directly by itself if you use the --fix flag with the
script:

• If the application secrets (play secret and event seal secret) have not been changed, the doctor
will generate random application secrets and provide them to Stream directly (requires you to
manually restart Stream afterwards);

• If firewalld is not allowing HTTP and HTTPS traffic, the doctor will change the firewall settings
to allow both protocols and then restart the firewall by itself;

• If some permissions for the configuration file, the license file or the keyset file are not what they
should be, the doctor will change these permissions (file owner and rwx permissions) to be
what they should.

66

Help menu

To display Stream doctor’s help menu, use the -h option.

1.6. Advanced configuration
Some technical configurations can be applied to an instance directly in its configuration file. This
should be used carefully as it may cause things to break.

Injecting advanced configuration

RPM

On VMs, you have access to the /opt/stream/etc/conf.d/stream-extra.conf file. For each
parameter you wish to override, create a newline and use the following syntax:

<parameter>=<value>

As an example, if you want to modify the file extension that DER certificates will have when
sent as email attachments and set it to CRT, you need to add:

stream.metrics.enabled=true

After modifying the file, restart the Stream service:

$ systemctl restart stream


One added line means one modified option, you need to add as many lines
at the end of the file as there are values that you want to override.

Kubernetes

The Stream container provides a bundled application.conf file that is mostly configured
through environment variables. To modify low-level behavior of Horizon that are not
accessible through an environment variable, use the extraConfig value in your values.yaml
file to update specific settings:

extraConfig: |
 stream {
 metrics.enabled = true
 }

Extra configurations are appended at the end of the config file, overriding any previously
set config value.

67

Available settings

 Parameter stream.security.http.headers.xapi.idprov was deleted.

 Parameter stream.security.http.headers.xapi.key was deleted.

 Parameter stream.security.http.headers.xapi.id was deleted.

 Parameter stream.security.http.headers.xid was deleted.

 Parameter stream.trustchain.ca.online.root.operational was deleted.

 Parameter stream.trustchain.ca.online.root.non_operational was deleted.

 Parameter stream.trustchain.ca.online.subordinate.operational was deleted.

 Parameter stream.trustchain.ca.offline.root.non_operational was deleted.

 Parameter stream.crl.manager.timeout was deleted.

 Parameter stream.ocsp.manager.timeout was deleted.

 Parameter stream.timestamping.manager.timeout was deleted.

 Parameter stream.crl.queue.size was deleted.

Bootstrap Configuration

stream.bootstrap.administrator.name

stream.bootstrap.administrator.name = "administrator"

Default administrator account name

stream.bootstrap.administrator.display-name

stream.bootstrap.administrator.display-name = "Stream Administrator"

Default administrator account display name


This parameter replaces stream.bootstrap.administrator.display.name. Please
modify your configuration accordingly

68

stream.bootstrap.administrator.password.path

stream.bootstrap.administrator.password.path = "var/run/adminPassword"

Relative path of the file where the initial admin password should be stored into

stream.bootstrap.local.identity.provider

stream.bootstrap.local.identity.provider = "local"

Length (in bytes) of the initial admin password

Default administrator account identity provider to use

stream.bootstrap.timeout

stream.bootstrap.timeout = "1m"

Duration after which the bootstrap of Stream times out

CRL Configuration

stream.crl.sync.interval

stream.crl.sync.interval = "15m"

Interval at which CRL synchronization occurs

stream.crl.cache.max-age.mode

stream.crl.cache.max-age.mode = "1s"

How to set max-age cache directive on crl fetch: one of 'disabled', 'nextrefresh' or a duration

stream.crl.cache.max-age.default

stream.crl.cache.max-age.default = "5m"

Default max-age duration in 'nextrefresh' mode when the CRL has no next refresh planned

69

stream.crl.upload.max-size

stream.crl.upload.max-size = "20m"

Max allowed size on applicative side for CRL uploads

Certificate authentication

stream.security.http.headers.certificate

stream.security.http.headers.certificate = null

Name of the HTTP header containing the certificate

stream.security.authentication.enforce-x509

stream.security.authentication.enforce-x509 = false

Allow only certificate authentication

Event Configuration

stream.event.ttl

stream.event.ttl = null

Time to live of the events. If not set, events never expire

stream.event.chainsign

stream.event.chainsign = true

Specify whether to chain and sign the Stream events to ensure they haven’t been tampered with

stream.event.seal.algorithm

stream.event.seal.algorithm = "HS512"

Algorithm to use to hash the signature of the events in Stream (other possible values are "HS384"
and "HS256")

70

stream.event.seal.secret

stream.event.seal.secret = null

Secret to seal the events with

stream.event.ignore-unsealed-pending

stream.event.ignore-unsealed-pending = false

Do not throw an error if pending events are unsealed

stream.event.disable-stacktrace

stream.event.disable-stacktrace = false

Enable to remove stacktraces from Stream events

stream.event.timeout

stream.event.timeout = "30s"

Duration after which the event manager times out when trying to retrieve the last signed event in
the database

stream.event.manager.interval

stream.event.manager.interval = "5s"

How often will the Event Manager actor check in the database if new a new event appeared to sign
it and display it in the "Events" section of Stream

General

stream.security.trustmanager.enforce-serverauth

stream.security.trustmanager.enforce-serverauth = false

If set to true, enforces the use of the serverAuth EKU in the server authentication certificates (when
Stream accesses a service through TLS)

 This parameter replaces stream.security.trustmanager.enforce_serverauth. Please

71

modify your configuration accordingly

stream.security.trustmanager.timeout

stream.security.trustmanager.timeout = "10s"

Timeout to check trust status of certificates


This parameter replaces stream.trust.manager.timeout. Please modify your
configuration accordingly

stream.security.trustmanager.cache.expire-after-access.external

stream.security.trustmanager.cache.expire-after-access.external = "30d"

Time after which an entry in the CRL cache expires for external CAs


This parameter replaces stream.trust.manager.cache.external.expireafteraccess.
Please modify your configuration accordingly

stream.security.trustmanager.cache.expire-after-access.managed

stream.security.trustmanager.cache.expire-after-access.managed = "5m"

Time after which an entry in the CRL cache expires for managed CAs


This parameter replaces stream.trust.manager.cache.managed.expireafteraccess.
Please modify your configuration accordingly

stream.security.trustmanager.crl-info.interval

stream.security.trustmanager.crl-info.interval = "5m"

Interval at which CRL Info are synchronized in trust manager

stream.security.manager.timeout

stream.security.manager.timeout = "10s"

Duration after which the security manager times out when trying to authenticate a principal with
its session

72

stream.security.principal.password.length

stream.security.principal.password.length = 42

Local accounts password length


This parameter replaces stream.account.secret.length. Please modify your
configuration accordingly

stream.keystore.timeout

stream.keystore.timeout = "1m"

How long the authentication cache lasts

Timeout for operations using keystores (generating CSR, listing keys, etc ..)

stream.keystore.pkcs11.reload.delay

stream.keystore.pkcs11.reload.delay = "5s"

Delay when reloading pkcs11 keystores after an error

stream.keystore.healthcheck.interval

stream.keystore.healthcheck.interval = "5m"

Interval at which keystore status is checked

stream.keystore.required-for-readiness

stream.keystore.required-for-readiness = []

List of names of keystores that are required to consider the instance ready

stream.queue.timeout

stream.queue.timeout = "5s"

Timeout to register the queues in actors

73

stream.queue.parallelism

stream.queue.parallelism = 5

Number of parallel requests (enrollment, revocation, ocsp, timestamping…) on the default queue


This parameter replaces stream.queue.default.parallelism. Please modify your
configuration accordingly

stream.queue.size

stream.queue.size = 100

Number of requests (enrollment, revocation, ocsp, timestamping, crl, krl) that can be queued on the
default queue


This parameter replaces stream.queue.default.size,stream.crl.queue.size. Please
modify your configuration accordingly

stream.metrics.enabled

stream.metrics.enabled = false

Enable advanced metrics for collection

stream.metrics.intervals.short

stream.metrics.intervals.short = "30s"

Interval at which short lived metrics are computed

stream.metrics.intervals.long

stream.metrics.intervals.long = "5m"

Interval at which background metrics are computed

stream.trigger.timeout

stream.trigger.timeout = "1m"

Timeout for registering the triggers in actors

74

stream.ntp.client.timeout

stream.ntp.client.timeout = "1m"

Timeout for registering the NTP Clients in actors

stream.system.monitor.timeout

stream.system.monitor.timeout = "1m"

Timeout for the system monitor loading


This parameter replaces stream.system.configuration.timeout. Please modify your
configuration accordingly

stream.sql.max-recursion-depth

stream.sql.max-recursion-depth = 5

Maximum recursion allowed for the SQL (Stream Query Language) queries

HTTP Headers Configuration

stream.security.http.headers.enforce-connection-close

stream.security.http.headers.enforce-connection-close = true

Defines whether HTTP connections should remain open


This parameter replaces stream.http.header.enforce_connection_close. Please
modify your configuration accordingly

stream.security.http.headers.real-ip

stream.security.http.headers.real-ip = "X-Real-IP"

Name of the HTTP header to use as Real IP


This parameter replaces stream.http.header.realip. Please modify your
configuration accordingly

75

KRL Configuration

stream.krl.sync.interval

stream.krl.sync.interval = "15m"

Interval at which KRL synchronization occurs

stream.krl.cache.max-age.mode

stream.krl.cache.max-age.mode = "1s"

How to set max-age cache directive on krl fetch: one of 'disabled', 'nextrefresh' or a duration

stream.krl.cache.max-age.default

stream.krl.cache.max-age.default = "5m"

Default max-age duration in 'nextrefresh' mode when the KRL has no next refresh planned

Keyset configuration

stream.secret.manager.keyset.path

stream.secret.manager.keyset.path = "etc/stream.keyset"

Path to the keyset for secrets encryption

stream.secret.manager.keyset.master-key-uri

stream.secret.manager.keyset.master-key-uri = null

Master key URI to encrypt the keyset with

OCSP Configuration

stream.ocsp.timeout

stream.ocsp.timeout = "1m"

Timeout for processing OCSP requests and starting OCSP actors

76

stream.ocsp.request.max-size

stream.ocsp.request.max-size = "8k"

Max allowed size for OCSP requests


This parameter replaces stream.ocsp.request.maxsize. Please modify your
configuration accordingly

stream.ocsp.default-next-update-delay

stream.ocsp.default-next-update-delay = "5m"

Default time for OCSP response next update when no crl refresh is available


This parameter replaces stream.ocsp.default.next_update_delay. Please modify
your configuration accordingly

OpenID Configuration

stream.openid.state-separator

stream.openid.state-separator = "#"

Separator character of the OpenID state


This parameter replaces
stream.security.identity.provider.openid.state.separator. Please modify your
configuration accordingly

stream.openid.nonce.size

stream.openid.nonce.size = 32

Size (in bytes) of the challenge stored in the nonce


This parameter replaces stream.security.identity.provider.openid.nonce.size.
Please modify your configuration accordingly

stream.openid.nonce.ttl

stream.openid.nonce.ttl = "1m"

77

Duration for which a nonce stays in Horizon before being removed


This parameter replaces stream.security.identity.provider.openid.nonce.ttl.
Please modify your configuration accordingly

SSH Configuration

stream.ssh.ca.timeout

stream.ssh.ca.timeout = "1m"

Timeout for registering the SSH Certificate Authorities in actors

The Timeout of SSH CA actions

Search Configuration

stream.security.principal.search.page.default-size

stream.security.principal.search.page.default-size = 50

How many elements to retrieve in a security principals search query if no pageSize has been
specified


This parameter replaces stream.security.principal.search.page.default_size.
Please modify your configuration accordingly

stream.security.principal.search.page.max-size

stream.security.principal.search.page.max-size = null

How big can the pageSize parameter be in a security principals search query (Must be a positive
integer)


This parameter replaces stream.security.principal.search.page.max_size. Please
modify your configuration accordingly

stream.event.search.page.default-size

stream.event.search.page.default-size = 50

How many elements to retrieve in an event search query if no pageSize has been specified

78


This parameter replaces stream.event.search.page.default_size. Please modify
your configuration accordingly

stream.event.search.page.max-size

stream.event.search.page.max-size = null

How big can the pageSize parameter be in an event search query (Must be a positive integer)


This parameter replaces stream.event.search.page.max_size. Please modify your
configuration accordingly

stream.x509.certificate.search.page.default-size

stream.x509.certificate.search.page.default-size = 50

How many elements to retrieve in a X509 certificate search query if no pageSize has been specified


This parameter replaces stream.certificate.search.page.default_size. Please
modify your configuration accordingly

stream.x509.certificate.search.page.max-size

stream.x509.certificate.search.page.max-size = null

How big can the pageSize parameter be in a X509 certificate search query (Must be a positive
integer)


This parameter replaces stream.certificate.search.page.max_size. Please modify
your configuration accordingly

stream.ssh.certificate.search.page.default-size

stream.ssh.certificate.search.page.default-size = 50

How many elements to retrieve in a SSH certificate search query if no pageSize has been specified

stream.ssh.certificate.search.page.max-size

stream.ssh.certificate.search.page.max-size = null

How big can the pageSize parameter be in a SSH certificate search query (Must be a positive

79

integer)

TSA Configuration

stream.timestamping.timeout

stream.timestamping.timeout = "1m"

Timeout to register signers and process responses

stream.timestamping.authority.timeout

stream.timestamping.authority.timeout = "1m"

Timeout to register timestamping authorities in actors

stream.timestamping.request.max-size

stream.timestamping.request.max-size = "8k"

Max allowed size for timestamping requests


This parameter replaces stream.timestamping.request.maxsize. Please modify your
configuration accordingly

X509 Configuration

stream.x509.ca.timeout

stream.x509.ca.timeout = "1m"

Timeout for registering the X509 Certificate Authorities in actors

The Timeout of X509 CA actions


This parameter replaces stream.ca.timeout. Please modify your configuration
accordingly

80

Chapter 2. Admin guide

2.1. Introduction

Description

Stream is EverTrust Certificate Authority solution and is powered up by:

• Pekko

• BouncyCastle

• MongoDB

• Kamon

• Play! Framework

• Scala

• NGINX

• Vue.js

• Quasar

This document is specific to Stream version 2.1, and may apply to follow-up minor releases.

Scope

This document is an administration guide detailing how to configure and operate Stream.

Out of Scope

This document does not describe how to install and bootstrap a Stream instance. Please refer to the
installation guide for installation related tasks.

2.2. Managing Certification Authorities

2.2.1. Importing an External Certification Authority

1. Log in to the Stream Administration Interface.

2. Go to Certification Authorities > External CAs and click on .

3. You need to provide the X509 CA Certificate, either by pasting it directly into the box or by
importing the file. PEM and DER formats are supported. Then click "Next".

4. In the Details tab, check if the details that were parsed from the certificate match those of the CA
you wish to import. If it does, click "Next".

81

https://evertrust.fr/
http://pekko.apache.org
https://www.bouncycastle.org/java.html/
http://www.mongodb.com/
http://kamon.io/
https://www.playframework.com/
http://www.scala-lang.org/
https://www.nginx.com/
https://vuejs.org/
https://quasar.dev/

5. In the Configuration tab, you can

• Add a CRL

• Edit the Refresh period

• Edit the Timeout timer

• Configure a proxy

• Toggle whether the external CA should be trusted for server authentication or client
authentication

• Specify the Outdated Revocation Status Policy

• Enable OCSP and configure a Default OCSP Signer

6. You can then click the "Import" button in the bottom right corner to import your CA.

If everything was ok, you should see your CA marked as external if you go to Certification
Authorities > Trust chains:

2.2.2. Importing an existing Managed Certification Authority

1. Log in to the Stream Administration Interface.

2. Go to Import existing CA from the menu on the left

3. Import your CA certificate file or paste the content of the file in the Copy/paste the certificate box.
If you decide to paste the file’s content, don’t forget to click the parse button on the right before
continuing.

4. Scroll down to the bottom of the page and check the certificate’s information. If everything is
correct, click "Next".

5. Select the Keystore where your CA’s key is stored. If you do not have a keystore set up yet, please
refer to the Managing Keystores & Keys section.

6. Select the key that was used to generate the CA from the selected keystore and click "Next".

7. Upload your CA’s CRL file and click "Add".

If everything was ok, you should see your CA marked as managed if you go to Certification
Authorities > Trust chains:

82

2.2.3. Issuing a new Root Certification Authority

1. Log in to the Stream Administration Interface.

2. Go to Create a new CA from the menu on the left.

3. Input your CA’s internal name and manage the DNs that you want to add (using the Add a DN
element button on the bottom left corner) or to remove (using the icon).

4. Select the Keystore that contains the key you want to use to generate this CA, then select the
key(s) that you want to use. If you do not have a keystore set up yet, please refer to the Managing
Keystores & Keys section.

5. Select Selfsigned as a signing method, and pick the hash algorithm of your choice. Optionally, if
you picked a PKCS#11 Keystore and an RSA key, you have the ability to use a PSS signature instead
of the classic PKCS#1 one : if you wish to do so, just turn on the toggle. Note that your HSM must
support the CKM_RSA_PKCS_PSS mechanism.

6. Set the lifetime of your CA in days. Optionally, you can set up a backdate and a path length.
Once you are done, click "Add".

7. You can directly configure your CA from this menu, by turning on or off enrollment, trusting the
CA for client authentication or server authentication, enabling OCSP or enforcing key unicity.
Once you’re satisfied with your settings, click "Add".

If everything was ok, you should see your CA marked as managed on a new trust chain if you go to
Certification Authorities > Trust chains:

83

2.2.4. Issuing a subordinate Certification Authority

Signed locally

1. Log in to the Stream Administration Interface.

2. Go to Create a new CA from the menu on the left.

3. Input your CA’s internal name and manage the DNs that you want to add (using the Add a DN
element button on the bottom left corner) or to remove (using the icon).

4. Select the Keystore that contains the key you want to use to generate this CA, then select the
key(s) that you want to use. If you do not have a keystore set up yet, please refer to the Managing
Keystores & Keys section.

5. Select Signed with an internal CA as the signing method.

6. Select the Managed CA you want to sign the certificate with.

7. Set the lifetime or your CA in days. Optionally, you can set up a backdate and a path length.

8. Optionally, you can set up an OID Policy, a CPS Pointer, add CRLDPs and the CA’s AIA. Once you
are finished with the settings, click "Issue CA".

9. You can directly configure your CA from this menu, by turning on or off enrollment, trusting the
CA for client authentication or server authentication, enabling OCSP or enforcing key unicity.
Additionally, if you issued this CA using an RSA key from a PKCS#11 keystore, you can choose to use
the PSS signature algorithm instead of the default PKCS#1 one to sign new certificates. To do so,
simply turn on the toggle. Note that your HSM must support the CKM_RSA_PKCS_PSS mechanism.
Once you’re satisfied with your settings, click "Add".

If everything was ok, you should see your CA marked as managed on a new trust chain if you go to
Certification Authorities > Trust chains:

Signed externally

1. Log in to the Stream Administration Interface.

2. Go to Create a new CA from the menu on the left.

84

3. Input your CA’s internal name and manage the DNs that you want to add (using the Add a DN
element button on the bottom left corner) or to remove (using the icon).

4. Select the Keystore that contains the key you want to use to generate this CA, then select the
key(s) that you want to use. If you do not have a keystore set up yet, please refer to the Managing
Keystores & Keys section.

5. Select Signed with an external CA as the signing method.

6. Click the link in the Export section to download the CSR for your CA, then sign it using your
external CA and export the signed certificate under PEM or DER format.

7. Upload the signed certificate in the Import section.

8. Scroll down to the bottom of the page and check the certificate’s information. If everything is
correct, click "Next".

9. You can directly configure your CA from this menu, by turning on or off enrollment, trusting the
CA for client authentication or server authentication, enabling OCSP or enforcing key unicity.
Once you’re satisfied with your settings, click "Add".

If everything was ok, your should see your CA marked as managed on a new trust chain if you go to
Certification Authorities > Trust chains:

2.2.5. Note on CRLDP and AIA settings



Regardless of the CA type, the setting "CRLDP" refers to the CRL of the CA you are
configuring, and NOT the one of the issuing CRL. Same goes for the AIA: you need
to specify the certificate of the CA you are configuring, and not the certificate of its
issuing CA.

2.2.6. AIA Certificate Issuer

Stream allows you to download the Certificate of the CAs (external and managed). This is usually
used in AIA issuer certificate extension to be able to download the certificate of the issuing
Certificate Authority.

The standard download URL format is http(s)://[stream_url]/aias/CA_internal_name. This URL can be
accessed by anyone without prior authentication, either through HTTP or HTTPS.

85

You need to specify the Internal name of the CA to download its certificate and not its Common
Name (CN).

The certificate format depends on the request ACCEPT header:

• application/x-pem-file: returns the certificate in PEM

• application/pkix-cert: returns the certificate in DER

• application/x-pkcs7-certificates: returns the certificate in PKCS7

If no ACCEPT header is specified, return the certificate in DER.

The certificate is returned with the following headers:

• Content-Type:

◦ application/x-pem-file for PEM

◦ application/pkix-cert for DER

◦ application/x-pkcs7-certificates for PKCS7

• Content-Disposition: 'attachment; filename=<ca name>'

2.3. Managing Certificate Revocation

2.3.1. Configuring Certificate Revocation Lists for an External
CA

1. Log in to the Stream Administration Interface ;

2. Go to Certification Authorities > External CAs and click on next to the name of the CA you
want to import the CRL of ;

3. Select a valid CRL file that has been signed by your CA ;

4. If everything went through correctly, the CRL of that external CA should be available to
download from Stream ;

5. Additionally, if you want to push the CRL into a CRL storage, click on the external CA ;

5.1 In the Configuration tab, select one or several previously created external storages from the
drop-down menu:

• On CRL update: this will be triggered every time a new CRL is uploaded (see step 2).

• On CRL sync: this will trigger every 15 minutes to ensure CRL is up to date on the storage, and
push the new one if needed

5.2 Click the Save button at the top.

The CRL should now also be pushed in the CRL storage(s) whenever you manually import it into
Stream. Note that the CRL will still be accessible from the standard Stream CRLDP.

86

2.3.2. Configuring Certificate Revocation Lists for a Managed
CA

To manage the CRLs of a managed CA, you first need to set up a CRL Policy:

1. Log in to the Stream Administration Interface.

2. Go to Certification Authorities > Managed CAs and click on next to the name of the CA you
want to edit the CRL policy of.

3. Go under the CRL/OCSP tab.

4. First, you need to define the validity period of your CRL, i.e. the period of time while your CRL is
considered valid. The countdown starts at the moment the CRL is generated. If you want your CRLs
to be valid for a week, you can type 7 days.

5. You can then automate the CRL generation using either the Hard CRL generation, the Lazy CRL
generation or both of them in combination:

• The Hard CRL generation parameter takes a cron expression in Quartz format and generates
the CRL every time that cron expression is valid, without any condition. It is recommended to
generate the CRLs every day. To generate a new CRL every day at 1 A.M., the cron expression is:
0 0 1 * * ?

• The Lazy CRL generation parameter takes a cron expression in Quartz format and checks if the
CRL needs to be updated, i.e. if a certificate has been revoked, since the last CRL generation. If a
certificate has been revoked since the last generation then a new CRL will then be generated,
otherwise it will do nothing. It is recommended to have a short time span for the lazy
generation so that the CRL always stays up to date. To check for possible CRL updates every 5
minutes, the cron expression is: 0 0/5 * * * ?

6. Click the Save button at the top of the page.

Now your CRL policy has been configured, and you’ve been redirected to the Managed CAs page.

You can then generate manually the CA’s first CRL using the button next to the CA’s name that
you just configured. If you configured the Hard or the Lazy generation, your CRL will then
automatically be updated according to the cron quartz expression you specified.

7. Additionally, if you want to push the CRL into other storages, click on the managed CA ;

7.1 In the Configuration tab, select one or several previously created external storages from the
drop-down menu:

• On CRL generation: this will be triggered every time a new CRL is generates (manually or via

87

the configuration at step 5).

• On CRL sync: this will trigger every 15 minutes to ensure CRL is up to date on the storage, and
push the new one if needed

7.2 Click the Save button at the top.

The CRL should now also be pushed in other storages. Note that the CRL will still be accessible from
the standard Stream CRLDP.

2.3.3. Viewing CRLs

1. Log in to the Stream Administration Interface.

2. Go to Revocation Management > CRLs.

3. You can then see information regarding your CAs' CRLs that are going to be detailed below:

• The CA column indicates the name of the CA whose CRL is detailed in the line

• The Number column indicates the serial number of the CRL. It starts at 1 for the very first CRL
generated and is incremented by 1 at each generation. It is displayed in hexadecimal format.

• The Last update column indicates the date and time when the current CRL was generated.

• The Valid Until column indicates the date and time when the current CRL will expire. It should
be equal to Last update + the validity period you set in the CRL policy field.

• The Next refresh column indicates the date and time when the current CRL will be refreshed. It
should be equal to the nearest date matching either cron quartz expression you set in the CRL
policy field (lazy or hard).

• The download button allows you to download your CRL. It also serves as a CRLDP. For more
information about CRLDPs in Stream, please refer to next section.

• The generate button allows you to manually refresh the CRL and generates a new one.

• The refresh button refreshes the information displayed in the tab, in case a generation
happened in between. It does not refresh the CRLs, only the displayed information.

88

2.3.4. Downloading CRLs

Stream allows you to download the CRLs of the CAs it manages. The standard download URL
format is http(s)://[stream_url]/crls/CA_internal_name. This URL can be accessed by anyone without
prior authentication, either through HTTP or HTTPS.

You need to specify the Internal name of the CA to download its CRL and not its Common Name
(CN).

CRLs are by default generated and thus downloaded in DER format. You can specify ?form=PEM at
the end of the previously given URL to download the CRL in PEM format.

As an example, here are the CRLDPs of 2 different CAs that were set up through this guide:

• https://stream.evertrust.fr/crls/SAGMCA2 will download the CRL for SAGMCA2 through HTTPS in
DER format

• http://stream.evertrust.fr/crls/SAGMCA3?form=PEM will download the CRL for SAGMCA3
through HTTP in PEM format

2.3.5. External CRL Storages

Creating a Stream External Storage

Stream allows you to push your CRLs into other Stream instances upon generation, but it requires
to create an external Stream CRL storage in the product first. This section also assumes that you
have already configured Password or Certificate credentials for the desired stream instance.

To configure an external Stream CRL storage:

1. Log in to the Stream Administration Interface ;

2. Go to Revocation management › External CRL Storage and click on ;

3. Fill in the information :

• Select the Type* of external CRL storage, Stream for a Stream storage

• The Name* to give to that external storage

• The Description to add more details about this storage

• Select a list of notifications to send On execution error to be alerted if the push to the Stream
instance fails

• Add the technical name of the CA you wish to push the CRL to. 3 cases can occur:

◦ the technical name of the CAs are aligned on both instances: the field should be left blank, as
the trigger will by default use the technical name of the CA the CRL is linked to.

◦ the technical name of the CAs on the other instance can be deduced from the technical name
on the current instance. A template string can be used to format the name correctly.

◦ the technical names are not linked in any way. The technical name on the other instance

89

https://stream.evertrust.fr/crls/SAGMCA2
http://stream.evertrust.fr/crls/SAGMCA3?form=PEM

should be fully spelled out, and a trigger defined for each CA (using duplication)

• Enter the Endpoint* of your other Stream instance. This should include the protocol (https://).

• Select a Credential* to connect to the Stream instance. Only credentials on the Stream target can
be selected.

• Choose a Timeout for the push request

• Add a Proxy to use to connect to the instance, if any

4. Once you’ve filled all the information, click "Add"

The External CRL Storage is now created and can be used in CA configuration.

Creating an S3 External CRL Storage

Stream allows you to push your CRLs into S3 buckets upon generation, but it implies to configure an
external storage first. This section also assumes you have already configured Password credentials
for a cloud provider if you want to use a cloud storage solution.

To configure an external S3 CRL storage:

1. Log in to the Stream Administration Interface ;

2. Go to Revocation management › External CRL Storage and click on ;

3. Fill in the information :

• Select the Type* of external CRL storage, Amazon S3 for an S3 storage

• The Name* to give to that external storage

• The Description to add more details about this storage

• Select a list of notifications to send On execution error to be alerted if the push to the CRL
storage fails

• Add the Bucket* of your S3 storage

• Select a Credential to connect to the S3 server (AWS format). Only credentials on the AWS target
can be selected. If no credentials are specified, environment variable values will be used to
establish connection.

• Add a Role ARN to use when connecting to the S3 provider (only applicable for AWS)

• Select the Region to use if the S3 is in the cloud (AWS, GCP)

• Add a Proxy to use to connect to the external storage, if any

• If not using an AWS S3 Bucket, add the S3 Endpoint

• Choose whether to Force path style in URL name

• Reconfigure the CRL Alias. By default, the S3 object key will be the technical name of the CA
with .crl extension. Using template strings, this name can be modified. For example, if the file
should be named with an uppercase of the CA’s CN with the .pem extension, CRL Alias will be {{
Upper({{ca.signer.dn.cn.1}}) }}.pem

90

4. Once you’ve filled all the information, click "Add"

The External CRL Storage is now created and can be used in CA configuration.

Creating an LDAP External Storage

Stream allows you to push your CRLs into LDAP directories upon generation, but it requires to
create an external LDAP storage in the product first. This section also assumes that you have
already configured Password credentials for the desired LDAP directory.

To configure an external LDAP CRL storage:

1. Log in to the Stream Administration Interface ;

2. Go to Revocation management › External CRL Storage and click on ;

3. Fill in the information :

• Select the Type* of external CRL storage, LDAP for an LDAP storage

• The Name* to give to that external storage

• The Description to add more details about this storage

• Select a list of notifications to send On execution error to be alerted if the push to the CRL
storage fails

• Add the Host*, IP or hostname of the LDAP server where the CRL will be pushed into. Don’t add
"ldap://" or "ldaps://" in the beginning

• Add the Port* on which the LDAP server is running (default is 389 for LDAP and 636 for LDAPS)

• Select a Credential* to connect to the LDAP server. Only credentials on the LDAP target can be
selected.

• Add a Proxy to use to connect to the external storage, if any

• Enter a Base DN* that points the LDAP category to publish the CRL into

• Enter a LDAP search Filter* to find the resource where to publish the CRL into. Example :
(objectclass=cRLDistributionPoint)

• Define the CRL Attribute*, the resource attribute to publish the CRL into

• Choose whether to allow Stream to follow LDAP referral URLs

• Choose whether to use the Secure LDAPS protocol instead of the regular LDAP protocol

• Choose whether to Disable hostname validation, allowing Stream to connect to the LDAP
server in LDAPS even if the server certificate does not have the specified hostname as a DNS
SAN (only if Secure is turned on)

4. Once you’ve filled all the information, click "Add"

The External CRL Storage is now created and can be used in CA configuration.

91

Creating an SCP External Storage

Stream allows you to push your CRLs into any server supporting the SCP protocol upon generation.
This section also assumes that you have already configured SSH credentials for the desired server.

To configure an external SCP CRL storage:

1. Log in to the Stream Administration Interface ;

2. Go to Revocation management › External CRL Storage and click on ;

3. Fill in the information :

• Select the Type* of external CRL storage, SCP for an SCP storage

• The Name* to give to that external storage

• The Description to add more details about this storage

• Select a list of notifications to send On execution error to be alerted if the push to the CRL
storage fails

• Add the Host*, IP or hostname of the SCP server where the CRL will be pushed into.

• Add the Port* on which the SCP server is running (default is 22 for SSH)

• Select a Credential* to connect to the SCP server. Only credentials on the SCP/SFTP target can be
selected.

• Choose a Timeout for the SCP request

• Choose whether to Use compression when pushing the CRL

• Enter a known Fingerprint to use mutual authentication. If nothing is specified, no fingerprint
check will occur.

• Define the Path* where to push the CRL. Using template strings, this path can be dynamically
set. For example, if the crl should be pushed to the crls root folder with a filename being an
uppercase of the CA’s CN with the .pem extension, path will be /crls/{{
Upper({{ca.signer.dn.cn.1}}) }}.pem

4. Once you’ve filled all the information, click "Add"

The External CRL Storage is now created and can be used in CA configuration.

Creating an SFTP External Storage

Stream allows you to push your CRLs into any server supporting the SFTP protocol upon
generation. This section also assumes that you have already configured SSH credentials for the
desired server.

To configure an external SFTP CRL storage:

1. Log in to the Stream Administration Interface ;

92

2. Go to Revocation management › External CRL Storage and click on ;

3. Fill in the information :

• Select the Type* of external CRL storage, SFTP for an SFTP storage

• The Name* to give to that external storage

• The Description to add more details about this storage

• Select a list of notifications to send On execution error to be alerted if the push to the CRL
storage fails

• Add the Host*, IP or hostname of the SFTP server where the CRL will be pushed into.

• Add the Port* on which the SFTP server is running (default is 22 for SSH)

• Select a Credential* to connect to the SFTP server. Only credentials on the SCP/SFTP target can
be selected.

• Choose a Timeout for the SFTP request

• Choose whether to Use compression when pushing the CRL

• Enter a known Fingerprint to use mutual authentication. If nothing is specified, no fingerprint
check will occur.

• Define the Path* where to push the CRL. Using template strings, this path can be dynamically
set. For example, if the crl should be pushed to the crls root folder with a filename being an
uppercase of the CA’s CN with the .pem extension, path will be /crls/{{
Upper({{ca.signer.dn.cn.1}}) }}.pem

4. Once you’ve filled all the information, click "Add"

The External CRL Storage is now created and can be used in CA configuration.

2.3.6. Configuring OCSP

To configure an OCSP responder, you first need an OCSP signer.

1. Log in to the Stream Administration Interface.

2. Go to Revocation Management › OCSP Signers and click on at the bottom of the page.

3. Fill in the fields to create an OCSP signer that will sign OCSP requests:

• The Name of the OCSP signer: a technical name to identify this signer.

• The Keystore where to find the key for this signer.

• The Key that this signer will sign with.

• The DN of this signer, in X500 format with key=value separated by commas.

• The Notification on signer expiration that will notify users via Email or REST.

4. You must then generate the CSR , sign it using the CA you wish to verify certificate for, and

93

upload the signed certificate back to Stream


The certificate must be signed with the Key Usage digitalSignature (critical) and
the Extended Key Usage OCSPSigning

5. The OCSP Signer is now uploaded. Additional options are now available:

• The Response Signing Algorithm, the hash algorithm that will be used on responses signed by
this signer

6. Click the Save button at the bottom of the page.

Now your OCSP signer has been configured, OCSP must be enabled on a Certification Authority:

7. Go to Certification Authorities:

• Managed CAs, in the CRL/OCSP tab

• External CAs, in the Configuration tab

8. Toggle the Enable OCSP option. New options appear:

• Compromised CA? can be toggled if the CA was compromised to make all certificates on this CA
act as revoked

• The Default OCSP signer to use if no explicit signer is defined in the OCSP request

• The Archive Cutoff mode to use on OCSP responses:

◦ Issuer: the archive cutoff date will be this CA emission date

◦ Retention: the archive cutoff date will be the OCSP request date plus the retention period

9 Click the Save button at the top.

2.4. Managing Certificate Templates & EKUs

2.4.1. Certificate Templates

Stream uses the notion of Certificate Templates to add additional verifications when enrolling a
certificate.

To define a new certificate template:

1. Log in to the Stream Administration Interface.

2. Go to Certificates > Templates and click .

3. In the General tab, you can:

• set the template’s name

• set the path length it will tolerate

94

• disable the template

• enable proof of possession checking when enrolling with a CSR

• remove the CA BasicConstraint (set to false by default)

In the Duration part of the tab, you can edit the lifetime of the certificates that will enroll on this
template, as well as backdate them should you need to.

In the Private Key policy part of the tab, you can choose whether to enforce a usage period for the
private key that is detached from the validity of the certificate. Should it be defined, this period
must be within the validity period of the certificate. This field is optional in the RFC 5280 but
mandatory in the ICAO MRTD 9303 norm (section 7.1.1) and should only be used for signature
certificates.

In the Extra CSR Extensions, OIDs can be whitelisted to be taken as is from the CSR into the signed
certificate.

4. In the KU & EKU tab, you can set the Key Usages and Extended Key Usages of the certificates
that will enroll on this template. You can also use your own EKUs here. If you want to set up your
own EKUs, please refer to the Extended Key Usages part of this section.

5. In the Extensions tab, you can edit the CRLDPs, AIA, Authority Information Access, Policy,
Qualified Certificate Statement of the certificates that will enroll on this template. If you want to,
the certificates could use the information of the CA they will enroll on, otherwise, you can set
specific values in the template. These values will then override those retrieved from the CA.

• If you want to issue Qualified Certificates:

◦ ETSI QC Compliance Statement declares that the certificates is a Qualified Certificate.

◦ ETSI QC SSCD Statement declares that the private key related to the certified public key
resides in a Secure Signature Creation Device.

◦ ETSI Retention Period Statement indicates the duration of the retention period of material
information.

◦ ETSI QC Type Statement indicates which type of document can be signed by the certificate
(possible values are: ESEAL, ESIGN, WEB, NONE).

◦ ETSI Transaction Limit Statement indicates the limits of the transactions, you must fill every
field if enabled.

◦ ETSI QC PDS Statement is the PKI Disclosure Statement URI for a specified language.

◦ ETSI QC Legislation Statement is an array of country codes.

6. In the Data Fields tab, you can enforce your DNs, SANs and Extensions to match certain criteria
that can be defined in this section. By default, everything is accepted, meaning that any type and
amount of DNs, SANs and Extensions can be used in the certificates and it would successfully
enroll on the template.

•
If you want to enforce a Subject DN policy, then click in Subject DN composition, then
select the DN element that you want to put a policy on. You can set this element to be mandatory

95

https://www.icao.int/publications/Documents/9303_p12_cons_en.pdf

or not, to use a default value for that element that can be editable or not, you can also add a
whitelist of elements that are accepted values for this DN, or you can instead use a regex to
match the DN values that are accepted for this element.

• If you want to enforce a Subject Alternate Names policy, you can either click None to forbid
the use of SANs in certificates or you can click Some to configure the policy. If you clicked

Some, click and select the SAN element that you want to enforce a policy upon. You can
then input a minimum and maximum number of this SAN element to be present in the
certificate that will enroll: as an example, if you want to make the use of at least one DNS SAN
mandatory, use 1 as a minimum number. Finally, you can enforce your SANs to match a regex
to be considered valid on a certificate.

• If you want to enforce an Extension policy, you can either click None to forbid the use of
Extensions in certificates or you can click Some to configure the policy. If you clicked Some,

click and select the Extension that you want to enforce a policy upon. You can then set it
mandatory or not, and if supported, give it a default value that can be edited or not.

7. Once you’ve configured your template, you can click Save at the top of the page.


As mentioned previously, if you want your certificates to inherit the CRLDP, the
AIA and the Policy from the CA, you must toggle on the Get from CA switches and
not specify any policy, CRLDP or AIA in the template.

2.4.2. Extended Key Usage

Stream allows you to create and manage your own EKUs as long as you have an OID for it.

To create a custom EKU:

1. Log in to the Stream Administration Interface.

2. Go to Certificates > EKU then go at the bottom of the page and click .

3. Specify the name you want to give to your custom EKU as well as its OID in the menu, then click
"Add".

The EKU should show in the list with the custom switch turned on, as opposed to the standard EKUs
that have the custom switch turned off.

2.5. Managing Certificate Lifecycle

Enroll



Stream’s RA is not supposed to be a comprehensive registration authority and
should only be used when necessary. This simple RA is made for "on the fly"
generation only. If you want more advanced RA features to manually enroll
certificates, you should consider using Horizon’s Web RA.

96

To enroll a certificate via Stream:

1. Log in to the Stream Administration Interface.

2. Go to Certificates > Enroll. You’ll be prompted to fill the following information:

• CA (select) : The CA that will issue the certificate. The CA must be managed by Stream;

• Template (select) : The Stream certificate template to use to issue the certificate;

• CSR type : Whether the CSR to sign is in a dedicated file (File option) or in the clipboard (Text
option);

• CSR field : The CSR to sign (file or PEM-string).

3. Click the Enroll button.

Your certificate should now be visible in the Stream search engine.

Revoke

To revoke a certificate in Stream:

1. Log in to the Stream Administration Interface.

2. Go to Certificates > Search then find the certificate you want to revoke.

3. Click on the certificate you want to revoke. Alternatively, you can click on the certificate’s DN
then click Action > Revoke.

Your certificate status should turn red.

Search

To search for certificates in Stream, log in to the Stream Administration Interface and then go to
Certificates > Search.

Here are all the search criteria you can use:

• CA: the issuing certificate authority

• Status: the validity status of the certificate (valid, revoked or expired)

• Template: the certificate template the certificate has been enrolled on

• Certificate DNs: information regarding the certificate’s DNs

• Expiration date: the date when the certificate will expire

• Issuer: information regarding the certificate issuer’s DNs

• Serial: the certificate’s serial number

You can combine any number of them to refine your search.

97

2.6. OpenSSH

2.6.1. Managing Certification Authorities

1. Log in to the Stream Administration Interface.

2. Go to OpenSSH > Certification Authority from the menu on the left.

3. Input your CA’s internal name.

4. Select the Keystore that contains the key you want to use to generate this CA, then select the key
that you want to use. If you do not have a keystore set up yet, please refer to the Managing
Keystores & Keys section.

5. You can also configure KRL generation. To configure this section, please refer to the Key
Revocation page. Once you’re satisfied with your settings, click "Add".


OpenSSH CAs consist mainly of a keypair used to sign entity certificates and KRL,
and do not expire.

2.6.2. Managing Key Revocation

Configuring Key Revocation Lists for a Managed CA

To manage the KRLs of a managed CA, you first need to set up a KRL Policy:

1. Log in to the Stream Administration Interface.

2. Go to OpenSSH > Certification Authorities and click on next to the name of the CA you want
to edit the KRL policy of.

3. Define the validity period of your KRL, i.e. the period of time while your KRL is considered valid.
The countdown starts at the moment the KRL is generated. If you want your KRLs to be valid for a
week, you can type 7 days.

4. You can then automate the KRL generation using either the Hard KRL generation, the Lazy
KRL generation or both of them in combination:

• The Hard KRL generation parameter takes a cron expression in Quartz format and generates
the KRL every time that cron expression is valid, without any condition. It is recommended to
generate the KRLs every day. To generate a new KRL every day at 1 A.M., the cron expression is:
0 0 1 * * ?

• The Lazy KRL generation parameter takes a cron expression in Quartz format and checks if the
KRL needs to be updated, i.e. if a certificate has been revoked, since the last KRL generation. If a
certificate has been revoked since the last generation then a new KRL will then be generated,
otherwise it will do nothing. It is recommended to have a short time span for the lazy
generation so that the KRL always stays up to date. To check for possible KRL updates every 5
minutes, the cron expression is: 0 0/5 * * * ?

98

5. Click the Save button at the top of the page.

Now your KRL policy has been configured, and you’ve been redirected to the Managed CAs page.

You can then generate manually the CA’s first KRL using the button next to the CA’s name that
you just configured. If you configured the Hard or the Lazy generation, your KRL will then
automatically be updated according to the cron quartz expression you specified.

Viewing KRLs

1. Log in to the Stream Administration Interface.

2. Go to OpenSSH > KRL.

3. You can then see information regarding your CAs' KRLs that are going to be detailed below:

• The CA column indicates the name of the CA whose KRL is detailed in the line

• The Number column indicates the serial number of the KRL. It starts at 1 for the very first KRL
generated and is incremented by 1 at each generation. It is displayed in hexadecimal format.

• The Last update column indicates the date and time when the current KRL was generated.

• The Next refresh column indicates the date and time when the current KRL will be refreshed.
It should be equal to the nearest date matching either cron quartz expression you set in the KRL
policy field (lazy or hard).

• The download button allows you to download your KRL. It also serves as a KRLDP. For more
information about KRLDPs in Stream, please refer to next section.

• The generate button allows you to manually refresh the KRL and generates a new one.

• The refresh button refreshes the information displayed in the tab, in case a generation
happened in between. It does not refresh the KRLs, only the displayed information.

Downloading KRLs

Stream allows you to download the KRLs of the CAs it manages. The standard download URL
format is http(s)://[stream_url]/krls/CA_internal_name. This URL can be accessed by anyone without
prior authentication, either through HTTP or HTTPS.

You need to specify the Internal name of the CA to download its KRL.

As an example, here us the KRLDP of a CA that were set up through this guide:

• https://stream.evertrust.fr/krls/SAGMCA2 will download the KRL for SAGMCA2 through HTTPS in
PEM format

2.6.3. Managing Certificate Templates

Certificate Templates

Stream uses the notion of Certificate Templates to add additional verifications when enrolling a

99

https://stream.evertrust.fr/krls/SAGMCA2

certificate.

To define a new certificate template:

1. Log in to the Stream Administration Interface.

2. Go to OpenSSH > Templates and click .

3. In the General tab, you can set the template’s name, the type of SSH certificates it will generate
and turn the template on or off. In the Duration part of the tab, you can edit the lifetime of the
certificates that will enroll on this template, as well as backdate them should you need to. In the
OpenSSH part of the tab, you can edit the authorized key types as well as the principals required
on OpenSSH certificates.

4. Once you’ve configured your template, you can click Save at the top of the page.

2.6.4. Managing Certificate Lifecycle

Enroll

To enroll a certificate via Stream:

1. Log in to the Stream Administration Interface.

2. Go to OpenSSH > Enroll. You’ll be prompted to fill the following information:

• CA (select) : The CA that will issue the certificate. The CA must be managed by Stream;

• Template (select) : The Stream certificate template to use to issue the certificate;

• Public key type : Whether the Key to sign is in a dedicated file (File option) or in the clipboard
(Text option);

• Public key field : The key to sign (file or PEM-string).

• Principals field : The principals to sign the certificates for.

3. Click the Enroll button.

Your certificate should now be visible in the Stream search engine.

Revoke

To revoke a certificate in Stream:

1. Log in to the Stream Administration Interface.

2. Go to OpenSSH > Search then find the certificate you want to revoke.

3. Click on the certificate you want to revoke. Alternatively, you can click on the certificate’s DN
then click Action > Revoke.

100

Your certificate status should turn red.

Search

To search for certificates in Stream, log in to the Stream Administration Interface and then go to
Certificates > Search.

Here are all the search criteria you can use:

• CA: the issuing certificate authority

• Template: the certificate template the certificate has been enrolled on

• Status: the validity status of the certificate (valid, revoked or expired)

• Valid after: the date after which the certificate will be valid

• Valid before: the date when the certificate will expire

• Key ID: the certificate’s key ID

You can combine any number of them to refine your search.

2.7. Managing Keystores & Keys

2.7.1. Keystores in Stream

In Stream, keys are grouped in key containers called Keystores.

Stream handles 3 types of Keystores: Software keystores, PKCS#11 HSMs and Cloud KMS. Note that
some restrictions apply regarding the supported key types of the HSMs, namely:

• The software keystore supports:

◦ RSA key sizes above 1024 bits (the web administration console only offers RSA 2048, RSA
3072, RSA 4096 and RSA 8192);

◦ 3 elliptic curves: ECC NIST P-256, ECC NIST P-384 and ECC NIST P-521;

◦ 2 Edward curves: ED-448 and ED-25519;

◦ 3 MLDSA Algorithms: MLDSA-44, MLDSA-65 and MLDSA-87;

◦ 3 MLDSA Algorithms with PreHash: MLDSA-44 + SHA512, MLDSA-65 + SHA512 and MLDSA-
87 + SHA512;

• The PKCS#11 keystore crypto capabilities are entirely reliant on the HSM that is used. Generally,
RSA keys are all supported, while elliptic curves are not all supported by every HSM vendor.
Currently, Edward curves are also not supported by some HSM vendors; PQC is not yet
standardized in PKCS#11 so MLDSA support is not yet available.

• Stream can consume the following key types from an AWS KMS instance:

◦ RSA 2048, RSA 3072, RSA 4096;

◦ ECC NIST P-256, ECC NIST P-384, ECC NIST P-521;

101

◦ The AWS KMS currently does not support Edward Curves;

◦ Stream currently does not support the ECC SECG P-256k1;

• Stream can consume the following key types from an AKV instance:

◦ RSA 2048, RSA 3072, RSA 4096;

◦ ECC NIST P-256, ECC NIST P-384, ECC NIST P-521;

◦ Azure Key Vaults (even the Premium ones) currently do not support Edward Curves;

◦ Stream currently does not support the ECC SECG P-256k1;

• Stream can consume the following key types from a GCP CKM instance:

◦ RSA 2048, RSA 3072, RSA 4096;

◦ ECC NIST P-256 and ECC NIST P-384;

◦ The GCP CKM currently does not support Edward Curves.

2.7.2. Software keystore

Stream comes installed with a software keystore that can be used to generate RSA and ECDSA keys.
To set up a software keystore:

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click .

3. In Type, select Software. In Name, set the name you want to give to your keystore. Optionally,
you can add a description to your keystore.

4. Click the Add button.

Your keystore should appear in your keystores list with a green circle next to its name.


When using the software keystore, private keys are at some point stored in
memory in plain text. That represents a huge security flaw since it would just take
a memory dump of the Stream machine to be able to recover the private keys.


It is not recommended to use the software keystore except for testing or
development purposes due to the safety reasons detailed above.

2.7.3. PKCS#11 HSM

Stream supports key management through PKCS#11 HSMs.

Stream has been qualified to work with the following HSMs but should be working with any
PKCS#11 HSM:

• Entrust nShield Solo, Entrust nShield Connect, Entrust nShield as a Service

• Atos Proteccio

102

• Thales Luna (including DPoD), Thales Protect Server

• Utimaco CryptoServer

To set up a PKCS#11 keystore:

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click .

3. In Type, select PKCS#11. In Name, set the name you want to give to your keystore. Optionally,
you can add a description to your keystore.

4. Input the full path of the PKCS#11 library (ending in .so) of your HSM, then click the parse
button. If your HSM’s library was successfully loaded into Stream, you should be seeing your HSM’s
information. If you get an HSM error, please check the configuration of your HSM. Click "Next".

5. Select the HSM slot that you will be using on your HSM for this keystore and input its PIN code;

6. Optionally, you can set a Pool Size to your PKCS#11 interface. If disabled, Stream will open a
PKCS#11 session every time it needs to sign a certificate, then close it afterwards. If enabled, Stream
will open the number of connections specified in the pool size value and maintain them open as
long as Stream is running, to be able to directly sign certificates without having to open a PKCS#11
session. This feature comes particularly handy whenever working with a slow HSM, where opening
a session is a pretty long operation that can completely ruin performance.

Once you are done, click "Save". Your keystore should appear in your keystores list with a green
circle next to its name.

2.7.4. Cloud KMS

Stream supports 3 types of Cloud KMS: Google Cloud Platform (GCP), AWS Key Management Service
(KMS) and Microsoft Azure Key Vault (AKV).

Setting up a Google Cloud Key Management (GCP CKM)

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click .

3. In Type, select Google Cloud Platform. In Name, set the name you want to give to your keystore.
Optionally, you can add a description to your keystore.

4. Select the GCP credential to use to connect to the Cloud Key Management service. If you do not
have your GCP CKM credentials set up in Stream yet, please refer to the Credentials part of the
Managing Security section.

5. Input the GCP Project name in Project, the GCP Server location to use and the GCP Key Ring to
use. Additionally, you can specify the proxy to use as well as the timeout period. Once you are
done, click "Add".

103

Your keystore should appear in your keystores list with a green circle next to its name.

Setting up an AWS Key Management Service (AWS KMS)

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click .

3. In Type, select AWS. In Name, set the name you want to give to your keystore. Optionally, you
can add a description to your keystore.

4. Select the AWS credential to use to connect to the AWS Key Management Service. If you do not
have your AWS KMS credentials set up in Stream yet, please refer to the Credentials part of the
Managing Security section.

5. Input the AWS server’s region in AWS Region. Optionally, you can specify which AWS Role ARN
that should be impersonated for that KMS. Additionally, you can specify the proxy to use as well as
the timeout period. Once you are done, click "Add".



To make Stream able to use the keys in the AWS KMS for signature, you need to
give it the proper permissions in the AWS console. For more information regarding
this topic, please refer to this link, under the "Asymmetric KMS keys for signing
and verification".

Your keystore should appear in your keystores list with a green circle next to its name.

Microsoft Azure Key Vault (AKV)

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click .

3. In Type, select Azure Key Vault. In Name, set the name you want to give to your keystore.
Optionally, you can add a description to your keystore.

4. Select the AKV credential to use to connect to the Microsoft Azure Key Vault. If you do not have
your Microsoft AKV credentials set up in Stream yet, please refer to the Credentials part of the
Managing Security section.

5. Specify your Azure vault URL in the Vault URL box and the Azure tenant in the Azure Tenant
box. Additionally, you can specify the proxy to use as well as the timeout period. Once you are
done, click "Add".

Your keystore should appear in your keystores list with a green circle next to its name.

2.7.5. Managing keys in Stream

Regardless of the type of keystores you set up, you can manage the keys through Stream the same

104

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-default.html#key-policy-users-crypto

way

Adding a key into a keystore

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click on the keystore you want to add the key into.

3. Set the name of the key as well as the key type (RSA, ECDSA or EDDSA) and the key size (for
RSA)/key parameter (for ECDSA/EDDSA).

4. For the Cloud KMSs, you can set the key to be Hardware protected through the dedicated
toggle. For the PKCS#11 HSM, you can set the key to be exportable through the dedicated toggle.

5. Once you set up the key parameters as you want them, click "Add".

The page should refresh and show you the list of keys for the keystore you pushed the key into,
where you should see the key you just added.

Viewing the keys of a keystore

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click on the keystore you want to view.

3. You should see the list of keys on your keystore.

You can then see information about the keys in the keystore:

• The name column where you can see the name of the key ;

• The type column where you can see the type of algorithm that was used to generate the key.
Both RSA and ECDSA are part of the suiteb type algorithms ;

• The key type column where you can see the algorithm that was used to generate the key as well
as the key size/parameter ;

• The exportable column indicates if the key is exportable or not.

Deleting a key from a keystore

1. Log in to the Stream Administration Interface.

2. Go to Keystores and keys and click on the keystore you want to delete the key from.

3. Click the icon on the key that you want to delete and click "Confirm" on the prompt.


You cannot delete a key from a keystore if this key is currently used by a CA in
Stream. You must first delete the CA that references it and then go over the
deleting procedure.

105

2.8. Managing Notifications

2.8.1. Email

This section details how to configure the email notifications.

How to create an email notification

1. Log in to Stream Administration Interface.

2. Access emails from the drawer or card: Notifications › Emails.

3. Click on .

4. Fill in all mandatory fields in the Notifications details panel.

• The Name of the notification.

• The Lifecycle event triggering the notification.

◦ First, select the entity Type can be one of:

▪ CA: events on the Certification Authority lifecycle, like expiration of a CA

▪ CRL: events on the CRL lifecycle, like a generation or update

▪ OCSP Signer: events on the OCSP Signers lifecycle, like expiration of an OCSP signer

▪ System: events concerning Stream global objects, like credentials or license expiration

▪ Timestamping Signer: events on the Timestamping Signers lifecycle, like expiration of a
Timestamping signer

◦ Then, select the Event you wish to send the notification on.

• Select the notifications to send On execution error of this Notification to be alerted if it failed.

• The Delay before notification sending is only enabled when the Event is about the expiration
of an entity. This is the period where the notification will be sent before the expiration date.

5. Fill in all mandatory fields in the Notifications Email details panel.

• The email sender From which the mail will be sent.

• The email targets To send email.

• The email Subject, a template string that will be dynamically evaluated upon email generation.

• The email Body, a template string that will be dynamically evaluated upon email generation.

• Set whether the email body is HTML. The default value is set to false.


You can click on the next to the "Dynamic attributes" section, in order to get a
range of possibilities on which dictionaries and functions are available.

6. Click on the save button.

106

You can edit , duplicate or delete the Email Notification.

107

2.8.2. REST

This section details how to configure REST notifications.

How to create a REST notification

1. Log in to Horizon Administration Interface.

2. Access REST from the drawer or card: Notifications › REST.

3. Click on .

4. Fill in all mandatory fields in the Notifications details panel.

• The Name of the notification.

• The Lifecycle event triggering the notification.

◦ First, select the entity Type can be one of:

▪ CA: events on the Certification Authority lifecycle, like expiration of a CA

▪ CRL: events on the CRL lifecycle, like a generation or update

▪ OCSP Signer: events on the OCSP Signers lifecycle, like expiration of an OCSP signer

▪ System: events concerning Stream global objects, like credentials or license expiration

▪ Timestamping Signer: events on the Timestamping Signers lifecycle, like expiration of a
Timestamping signer

◦ Then, select the Event you wish to send the notification on.

• Select the notifications to send On execution error of this Notification to be alerted if it failed.

• The Delay before notification sending is only enabled when the Event is about the expiration
of an entity. This is the period where the notification will be sent before the expiration date.

5. Fill in all mandatory fields in the Notifications Rest details panel.

• The REST HTTP method and URL that the HTTP request will use

• The Proxy used by Stream to send the HTTP request.

• The Timeout to wait before stopping listening to an answer.

• The Accepted response HTTP code(s) to consider the request in success state.

• The Authentication type and credentials used by the HTTP request, for example, the basic
authentication.

• The Headers sent along with the HTTP request. Each header value is a template string that will
be dynamically evaluated when sending the notification.

• The Payload of the HTTP request. It is a template string that will be dynamically evaluated
when sending the notification.

 You can click on the next to the "Dynamic attributes" section, in order to get a

108

range of possibilities on which dictionaries and functions are available.

6. Click on the save button.

You can edit , duplicate or delete the Email Notification.

109

2.9. Managing Security

2.9.1. Authorizations

This section details how to configure the permissions granted to an account, either directly or through
a configured role.

Prerequisites

According to the context, you might need to set up:

• [admin-guide:security-roles:::_roles]

• Local accounts

How to add an authorization manually or from a certificate

1. Log in to Stream Administration Interface.

2. Access Authorizations from the drawer or card: Security › Authorizations.

3. Click on .

4. Click on Add Authorization Manually

5. Fill the mandatory fields:

• Either:

◦ Fill in an Identifier*: it can be either a local account identifier or an OpenID Connect
identifier (usually email address).

◦ Import a certificate by clicking on certificate button .

6. Click on add button.

How to add an authorization from a search

1. Log in to Stream Administration Interface.

2. Access Authorizations from the drawer or card: Security › Authorizations.

3. Click on .

4. Click on Search and Add Authorization

5. Search by Identifier for a local account previously defined.

6. Click on search button.

7. Choose the identifier you want to add.

110

8. Click on add button.

You can update , see connexion information , or delete Authorization.

How to grant a permission

1. Click on .

Role

2. Select a role previously created (if needed).

Permissions

Stream allows you to manage 2 types of permissions: configuration and lifecycle.

Stream uses wildcard permissions which means you can configure the permissions very
thoroughly.

Configuration

For configuration permissions, you can specify:

• the Section (ex: Security)

• the concerned Module (only for select modules)

• the type of permission: Audit (read-only) or Manage (read-write, equivalent to All).

4. Click on add button.

5. Select a section, then a module, then a submodule if there is, and a right.

6. Click on add button (Don’t forget to save).

7. Click on the save button if you are done.

Lifecycle

For lifecycle permissions, you can specify the concerned CA and the concerned Template then the
type of permission: Enroll, Revoke, Search or All of these.

4. Click on add button.

5. Select a module, then a profile, and a right.

6. Click on add button. (don’t forget to save).

7. Click on the save button if you are done.

111

2.9.2. Credentials

This section details how to configure credentials. Credentials are where credentials for all integrations
are regrouped.

How to create credentials

1. Log in to Stream Administration Interface.

2. Access Credentials from the drawer or card: Security › Credentials.

3. Click on .

4. Fill the fields.

• The Type*: Certificate for certificate based authentication, Login for login with password
credentials, API Token for a single value secret (JSON or other) or SSH for SSH Keys secret.

• The Name* of the credentials. It should clearly identify it.

• The Description to add additional information on these credentials.

• The Expiration date. This will be taken from the certificate for Certificate credentials, and will
be used for notifications on expiration.

• The Expiration notifications are [admin-guide:notifications-mail:::_email] or [admin-
guide:notifications-rest:::_REST] notifications on event Credentials expiration that will run on
expiration. Notifications configured here will be sent by the internal monitoring action.

• Certificate:

◦ The PKCS#12* file containing the authentication certificate and its key.

◦ The PKCS#12 Password* to open this PKCS#12.

• Credentials:

◦ The Login* of the account.

◦ The Password* of the account.

• API Token:

◦ The API Token* to use.

• SSH:

◦ The SSH identifier*: username to use for SSH connection.

◦ The SSH key* is the SSH private key in OpenSSH format for SSH connection.

5. Click on the save button.

You can update or delete the Credentials.

2.9.3. Identity Providers

112

How to configure an Identity Provider

1. Log in to Stream Administration Interface.

2. Access Identity Providers from the drawer or card: Security › Access Management › Identity
Providers.

3. Click on .

General tab

4. Select an identity provider type. Currently only OpenID is supported

OpenID connect

5. Fill in all fields:

• The Name* will be used to identify this provider on Stream and on the login page.

• Enabled* allows to disable the identity provider when access from this authentication source is
not needed.

• Enabled on UI* allows to hide this provider on the login page, but it will still be available via
direct API calls.

• The Provider metadata URL* is the url where the OIDC provider provides its metadata. For
example https://<oidc server>/.well-known/openid-configuration.

• The Client Credentials* are Password credentials containing the client id and secret used to
connect to the OIDC provider. They can be created on the go using the .

• The Scope* used by Stream during authentication on the identity provider to authorize access
to user’s details.

• The Proxy used to access Provider metadata URL, if any.

• The Timeout used for authentication on the identity provider. Must be a valid finite duration.
The default value is 10 seconds.

• The Identifier Claim* is a template string defining how to construct the identifier from the
OpenID Connect claims. For example, if the user identifier is contained in the login claim, and
should be lower case, then the configured value should be {{Lower({{login}})}}.

• The Name Claim* is a template string defining how to construct the user name from the
OpenID Connect claims. For example, if the user name must be constructed as family name,
GIVEN NAME and family name is available in the family_name claim, given name is available in the
given_name claim, then the configured value should be {{family_name}},
{{Upper({{given_name}})}}

6. Click on the save button.

You can update or delete the Identity Provider.

 You won’t be able to delete an Identity Provider if it is referenced in any other

113

https://<oidc

configuration element.

2.9.4. Local Accounts

How to create local accounts

1. Log in to Stream Administration Interface.

2. Access Local accounts from the drawer or card: Security › Access Management › Local
Accounts.

3. Click on .

4. Fill in the fields:

• The Identifier*, a meaningful identifier for the account holder. It will be used as a login to
access to the solution.

• The Name* for the account holder. It will be displayed on the interface when logged in.

5. Click on the create button. The account is created and a password is generated.

How to reset a password on a local account

1. Once a local account is created. Click on .

You can edit or delete a local account. You can reset a local account password.

 You can not delete yourself from local accounts.

2.9.5. Roles

Roles are a way to factor permissions making it easier to configure accounts and track permissions.

Creating a new role

1. Log in to the Stream Administration Interface.

2. Go to Security > Roles and click ;

3. Set the name of the role you want to create.Optionally, you can add a description to the role.

4. Add the configuration permissions you want the members of this role to have using the
from Configuration permissions. If the role is supposed to have no configuration permission,
leave this section empty.

5. Add the lifecycle permissions you want the members of this role to have using the from

114

Lifecycle permissions. If the role is supposed to have no lifecycle permission, leave this section
empty.

Once everything is set up, you can click Save.

Managing roles

1. Log in to the Stream Administration Interface.

2. Go to Security > Accounts. From there, you can see all Stream roles and their associated
information.

• The name column displays the role’s name;

• The description column displays the role’s description;

• The permissions column shows the straight permissions that are set up for the role. If the
account has any configuration permission, it will display and if it has any lifecycle
permission it will display ;

• You can view all the members of a role using the button;

• You can delete a role using the button;

• You can edit a role's information using the button.

2.9.6. Enforce Certificate Authentication

It is possible to enable x509_enforcing parameter in order to authorize only certificate
authentication.

 This means local accounts will no longer be able to connect on Stream.


When logging in using an X509 certificate, there is no logout option, meaning that
the only way to log out is to change the presented certificate in your browser, or to
switch to private browsing.

Using Stream configuration utility

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the main menu, select 'Stream':

115

In the Stream menu, select 'STREAM_ENFORCE_X509':

In the X509 Authentication Enforcing menu, select 'ENABLE':

For the changes to take effect, you must restart the Stream service by running:

systemctl restart stream

X509 Authentication is now enforced.

Re-enable local authentication

 This should be done in a confined and secure environment.

116

If you lose all available authentication certificates to Stream and want to re-gain access to the
administration console, please follow these steps:

Connect to the server with an account with administrative privileges;

Start the Stream configuration utility by running:

/opt/stream/sbin/stream-config

In the Stream menu, select 'STREAM_ENFORCE_X509':

In the X509 Authentication Enforcing menu, select 'DISABLE':

For the changes to take effect, you must restart the Stream service by running:

117

systemctl restart stream

Now that the X509 enforcing is disabled, you can log in with the initial administrator account that
was created during the bootstrap of the product. If you lost access to that account as well, or if you
deleted it, please contact the EVERTRUST support.

2.10. Managing Stream instance

2.10.1. Events

The event system exists to overview the actions happening on Stream.

By default, the events are chained by the following rule: event n references event n-1. They are
signed with the event seal secret set up during the stream installation.

To consult them:

1. Log in to the Stream Administration Interface.

2. Go to System > Events.

Event integrity reports

To check the integrity of the events, you can run an event integrity report:

1. Log in to the Stream Administration Interface.

2. Go to System > Events Integrity Reports.

3. Click ;

4. Click Run

The integrity of the event chain is checked and can take some time depending on the number of
events in the database. Once finished, the report may have different status:

• Running: the integrity of the events is currently being checked.

• Verified: the event chain is not compromised.

• Report integrity failure: the report signature has been compromised.

• Event integrity failure: the event chain has been compromised, one event could have been
modified or deleted. The event integrity report error provides details about the cause of the
integrity failure.


Any compromised object means an account with enough permission to write in
the database has been compromised.

118

Purging/Backup event database


Manual actions regarding the events manipulation should be done with stream
turned off and in a confined environment.

Follow the Backup guide to save your database. Once done, you might want to delete the events in
database.

Deletion of events can only be made from the oldest to the newest since events are chained. For
example, you might want to delete every event before a date:

use stream;
db.events.deleteMany({"timestamp":{$lt: ISODate("2023-09-20")}});

After the deletion of events, the Head is still chained to a deleted event. In order to fix that, you will
need to run the Set the first event as head in /opt/stream/sbin/stream-config:

In the main menu, select 'Stream':

In the Stream menu, select 'STREAM_EVENT_SET_HEAD':

Integrity compromised

If an event or event integrity report has been compromised, it means that someone had database
access to Stream or one of its backups and manually edited the events to hide specific actions.

You should close all network access to the server and, if necessary, turn off stream. Once confined,
you should follow these steps:

119

1. Follow the Backup guide to back up your database. It may be used to investigate the problem.

2. Analyze the logs (you may use an older verified backup to assess modifications).


Since the database has been compromised, every event should be considered as a
non trusted information

3. Based on your assessments, take the appropriate actions. This could mean changing the
MongoDB password, changing the server password, revoking stream access certificates or other
actions.

4. To resume a normal state, remove every corrupted event following the steps in the event purge
guide.

2.10.2. Event codes documentation

All the events displayed in this document work in a similar manner. In case of a failure, the event
will display the reason of said failure. This behavior is also valid for warning-status events.

BOOTSTRAP

Bootstrap events relate to the initial setup of the Stream platform.

• BOOTSTRAP-ADMINISTRATOR-ACCOUNT
This event is triggered when installing Stream, it corresponds to the creation of the
administrator local identity on Stream.

• BOOTSTRAP-ADMINISTRATOR-PRINCIPAL
This event is triggered when installing Stream, it corresponds to the creation of a link between
the administrator account and its rights.

• BOOTSTRAP-LOCAL-IDENTITY-PROVIDER
This event is triggered when installing Stream, it corresponds to the creation of a provider of
type Local so that the administrator can connect after startup.

• BOOTSTRAP-SYSTEM-CONFIGURATION
This event is triggered when installing Stream, it corresponds to the creation of internal
configuration elements such as the CRON internal monitor.

CA

• CA-CRL-GEN
This event occurs on a CRL Generation request on a CA.

• CA-CRL-UPLOAD
This event occurs when a CRL is being uploaded on a CA.

• CA-CSR
This event occurs when a CSR generation is requested on a CA. This is commonly part of the CA
issuing process.

• CA-ENHANCE

120

This event occurs when a legacy CA is being enhanced to a PQC-ready CA.

• CA-ISSUE
This event occurs when a CA is being issued.

• CA-KRL-GEN
This event occurs on a KRL Generation request on a CA.

• CA-MIGRATE
This event occurs when an external CA is being migrated to a managed CA.

• CA-REVOKE
This event occurs on a CA revocation attempt.

CONF

CONF events are triggered when users interact with configuration elements. This includes
certificate templates, notification triggers, Certification Authorities…

• CONF-ADD
This event is triggered when a user tries to add a configuration element.

• CONF-DELETE
This event is triggered when a user tries to delete a configuration element.

• CONF-UPDATE
This event occurs when a user tries to modify a configuration element.

CRL

• CRL-GEN
This event occurs on a CRL generation attempt, either requested by application processes or the
user.

• CRL-GET
This event occurs on a CRL retrieval attempt from a CRLDP. These are attempted by the
application.

• CRL-SYNC
This event is triggered when a failure occurs on a CRL Synchronization.

• CRL-UPLOAD
This event occurs when a user tries to upload a new CRL on a CA.

EVENT COMPLIANCE

• INVALID-SEAL-PENDING-EVENT
This event occurs when a pending event has an invalid seal (indicating data corruption in the
pending events collection).

• UNSEALED-PENDING-EVENT
This event occurs when a pending event has no seal (indicating data corruption in the pending
events collection).

121

INTERNAL MONITOR

• INTERNAL-MONITOR-INIT
This event occurs when a bad initialization of the internal monitor happens. It is a failure case,
happening for instance when it is not configured

• INTERNAL-MONITOR-RUN
This event occurs when the internal monitor completes successfully.

KRL

• KRL-GEN
This event occurs on a KRL generation attempt, either requested by application processes or the
user.

• KRL-SYNC
This event is triggered when a failure occurs on a KRL Synchronization.

LICENSE

• LICENSE-EXPIRED
This event occurs when the license has expired.

• LICENSE-INVALID
This event occurs when the license contains no entitled modules.

• LICENSE-MODULE-NOT-ENTITLED
This event occurs when the requested module is not entitled on the license.

LIFECYCLE

• LIFECYCLE-ENROLL
This event is triggered when an enrollment request for an end-entity certificate is received. The
event specifies all the requested certificate fields, as well as CA, keystore and template
information. In case of success, the issued certificate PEM is specified. In case of failure, the
reason of the failure is specified (e.g.: "Unauthorized DN element").

• LIFECYCLE-REVOKE
This event occurs when a user tries to revoke a certificate. Note that no event is triggered when
a certificate expires.

OCSP

• OCSP-CSR
This event is triggered when issuing a CSR for an OCSP Signer.

SECURITY

• BOOTSTRAP-ADMINISTRATOR
This event is triggered when installing Stream, it corresponds to the creation of the initial
administrator account (replaced by BOOTSTRAP-ADMINISTRATOR-PRINCIPAL & BOOTSTRAP-

122

ADMINISTRATOR-ACCOUNT).

 Deprecated since version 2.0.0

• SEC-AUTHENTICATION
This event is triggered when a user tries to connect. The identifier (local, OpenID, X509 DN, …) is
specified whether it is a failure or a success.

ACCOUNT

• SEC-ACCOUNT-ADD
This event occurs when an account is created (replaced by authorizations & local accounts).

 Deprecated since version 2.0.0

• SEC-ACCOUNT-DELETE
This event occurs when an account is deleted (replaced by authorizations & local accounts).

 Deprecated since version 2.0.0

• SEC-ACCOUNT-UPDATE
This event occurs when an account is updated (replaced by authorizations & local accounts).

 Deprecated since version 2.0.0

AUTHORIZATION


These events relate to the Security>Access Management>Authorizations tab under
configuration.

• SEC-AUTHORIZATION-ADD
This event is triggered when a user tries to create a an authorization object.

• SEC-AUTHORIZATION-DELETE
This event is triggered when a user tries to delete an authorization object.

• SEC-AUTHORIZATION-UPDATE
This event is triggered when a user tries to modify elements inside an authorization object. The
event specifies the modified fields.

CREDENTIALS

 These events relate to the Security>Credentials tab under configuration.

• SEC-CREDENTIAL-ADD
This event occurs when a user tries creating new credentials.

• SEC-CREDENTIAL-DELETE
This event occurs when a user tries deleting credentials.

123

• SEC-CREDENTIAL-UPDATE
This event occurs when a user tries updating credentials.

IDENTITY


These events relate to the Security>Access Management>Identity tab under
configuration.

• SEC-IDENTITY-PROVIDER-ADD
This event occurs when a user tries creating an identity provider profile.

• SEC-IDENTITY-PROVIDER-DELETE
This event occurs when a user tries deleting an identity provider profile.

• SEC-IDENTITY-PROVIDER-UPDATE
This event occurs when a user tries modifying an identity provider profile. The modified fields
are specified in the event.

LOCAL IDENTITY


These events relate to the Security>Access Management>Local accounts tab under
configuration.

• SEC-LOCAL-IDENTITY-ADD
This event is triggered when a user tries creating a local account.

• SEC-LOCAL-IDENTITY-DELETE
This event is triggered when a user tries to delete a local account.

• SEC-LOCAL-IDENTITY-RESET
This event is triggered when executing the reset password workflow.

• SEC-LOCAL-IDENTITY-UPDATE
This event is triggered when a user tries modifying a local account. The modified fields are
specified. Updating the password falls in this event.

ROLE


These events relate to the Security>Access Management>Roles tab under
configuration.

• SEC-ROLE-ADD
This event is triggered when a user tries to create a new role.

• SEC-ROLE-DELETE
This event is triggered when a user tries to delete a role.

• SEC-ROLE-UPDATE
This event is triggered when a user tries to modify a role. The modified fields are specified in
the event.

124

SERVICE

• SERVICE-START
This event is triggered when the Stream service is started.

• SERVICE-STOP
This event is triggered when the Stream service is manually stopped.

TIMESTAMPING

• TSA-CSR
This event is triggered when issuing a CSR for a Timestamping Signer.

TRIGGER

• CRL-EXTERNAL-STORAGE
This event is triggered when a CRL External Storage runs (replaced by TRIGGER-RUN).

 Deprecated since version 2.0.0

• TRIGGER-RUN
This event occurs when a trigger (External CRL/KRL Storage, Notification) runs.

2.10.3. Proxies

How to configure an HTTP Proxy

1. Log in to Stream Administration Interface.

2. Access HTTP Proxy from the drawer or card: System › HTTP Proxies.

3. Click on .

4. Fill the fields:

• The Name* of the proxy.

• The Host* is the Hostname or IP Address of the proxy.

• The Port* of the proxy.

5. Click on the create button to save.

You can update or delete the HTTP Proxy.


You won’t be able to delete an HTTP Proxy if it is referenced in any other
configuration element.

125

2.10.4. Queue

Queue Configuration

1. Log in to Stream Administration Interface.

2. Access Queues from the drawer or card: System › Queues.

3. Click on .

4. Fill in the fields:

• The Name* of the queue. It must be unique.

• The Description to add additional information on this queue.

• The Throttle Duration and Throttle Parallelism. The maximum number of parallel request
during the duration.

• The Max Size* of the queue

 If the queue is full every new request will be discarded.

• The Cluster Wide parameter defines the queue behavior in multi node setup. If not enabled,
then the throttleParallelism and throttleDuration will be the same for all nodes in the cluster.
If enabled, then the throttleParallelism and throttleDuration is generalized for all clusters.

2.10.5. Global configuration

These configurations handle various Stream global parameters directly via the Web Interface.

Internal monitoring

This parameter configures the internal monitoring execution interval. Internal monitoring refers to
an action that will check the expiration and usage status of credentials and license, and send the
configured notifications if needed.

By default, this action will be executed every day at midnight UTC. The notifications will keep being
sent each day for as long as an action is needed.

License configuration

The license configuration panel allows to configure [admin-guide:notifications-mail:::_email] or
[admin-guide:notifications-rest:::_REST] notifications to be sent on license expiration: using a
notification on the License Expiration event and the Delay before notification sending field in the
notification configuration, notifications configured here will be sent by the internal monitoring
action.

126

2.11. Timestamping

2.11.1. Timestamping Authorities

To configure a Timestamping Authority, a Timestamping Signer and an NTP Client(s) must already
be configured.

1. Log in to the Stream Administration Interface.

2. Go to Timestamping › Authorities and click on at the bottom of the page.

3. Fill the fields:

• The unique Name* of the Timestamping Authority

• Choose whether to Enable it to sign timestamping requests

• Enter the Policy OID* this authority manages

• Add a Timestamping Signer* that will sign the requests for this authority

• Select the Accepted Hash Algorithms* for signature

• Select the NTP Client(s)* that will be the time source for the timestamping

• Choose whether to Check Revocation of the signer certificate when processing timestamping
requests

4. Click "Save" at the bottom.

If everything was ok, the authority now appears in the list.

2.11.2. NTP Clients

1. Log in to the Stream Administration Interface.

2. Go to Timestamping › NTP and click on at the bottom of the page.

3. Fill the fields:

• The unique Name* of the NTP client

• Enter a Description for additional information about this NTP Client

• Enter the Host* where to find the NTP server

• Enter the Port where to join the NTP server on. Default is the standard 123 port.

• Select a Timeout* for NTP requests

• Choose the NTP parameters like the Max Stratum, defining the maximum authorized stratum,
the Max Offset, defining the maximum offset allowed between local system clock and NTP
clock and Max RTT, the maximum round trip time allowed.

4. Click "Save" at the bottom.

127

After these steps, the NTP client now appears in the list.

2.11.3. Timestamping Signers

1. Log in to the Stream Administration Interface.

2. Go to Timestamping › Signers and click on at the bottom of the page.

3. Fill in the fields to create a Timestamping signer that will sign Timestamping requests:

• The Name of the Timestamping signer: a technical name to identify this signer.

• The Keystore where to find the key for this signer.

• The Key that this signer will sign with.

• The DN of this signer, in X500 format with key=value separated by commas.

• The Notification on signer expiration that will notify users via Email or REST.

4. You must then generate the CSR , sign it using your Timestamping CA, and upload the signed
certificate back to Stream


The certificate must be signed with the Key Usage digitalSignature (critical) and
the Extended Key Usage timeStamping (critical)

5. The Timestamping Signer is now uploaded. Additional options are now available:

• The Response Signing Algorithm, the hash algorithm that will be used on responses signed by
this signer

6. Click the Save button at the bottom of the page.

2.12. Backup and Restore
This section details how to use the provided EverTrust Tools to back-up and restore Stream if
deployed using the RPM package. If you deployed Stream using Docker/Kubernetes, the
configuration should be backed-up using the Docker/Kubernetes management platform, and the
database should be backed-up using MongoDB tools.

Backup Procedure

This section details how to back up Stream configuration elements (the /opt/stream/etc folder, that
includes the Nginx configuration, and the /etc/default/stream configuration file) and the Stream
MongoDB database.

The backup tool allows backing up these elements independently.

/opt/stream/sbin/stream-backup --help

128

Stream Backup tool usage: stream-backup [-cdeho:q]
-c | --conf Backup the Stream configuration files
-d | --db Backup the Stream MongoDB Database
-e | --encrypt Encrypt the backup files with the specified passphrase
-h | --help Display the 'stream-backup' help
-o | --output [path] Specify the Stream backup output folder (default: '/opt/stream/var/backup')
-q | --quiet Quiet mode

To back up the configuration files, run the following command:

/opt/stream/sbin/stream-backup -c

The configuration files backup consists of a compressed archive (.tar.gz) located under
/opt/stream/var/backup/.

To back up the MongoDB database, run the following command:

/opt/stream/sbin/stream-backup -d

The MongoDB database backup consists of a compressed file (.gz) located under
/opt/stream/var/backup/.

To run a complete backup, execute the following command:

/opt/stream/sbin/stream-backup -c -d



• The backup output folder can be overridden using the -o | --output parameter

• The backup tool can operate in quiet mode (when scheduled in a cron job)
using the -q | --quiet parameter

• If you want to encrypt your back-up files, use the -e | --encrypt parameter.
The backup tool will prompt you for a passphrase. The back-up will be
encrypted using AES-256.

129

Restoration Procedure

This section details how to restore a Stream back-up that was generated using the stream-backup
tool. The restoration happens using the stream-restore tool.

/opt/stream/sbin/stream-restore --help

Stream restore tool usage: stream-restore
-a | --archive [filepath] The encrypted backup file to restore
-c | --conf [filepath] The path to the Stream configuration backup file
-d | --db [filepath] The path to the Stream database backup file
-m | --mongo_uri [MongoDB URI] The MongoDB URI to back-up the database into (optional)
-h | --help Displays the 'stream-restore' help
-q | --quiet Quiet mode

Whenever trying to restore a backup, you need to stop the Stream service first:

systemctl stop stream

To restore an unencrypted configuration backup, run the following command:

/opt/stream/sbin/stream-restore -c [configuration backup archive path]

To restore an unencrypted MongoDB database backup, run the following command:

/opt/stream/sbin/stream-restore -d [MongoDB backup archive path] -m [MongoDB URI]

The MongoDB URI is optional: if not provided, the script will try to infer it from the
/etc/default/stream file. If it cannot be inferred and none is provided, the restore will fail.

To restore an encrypted backup archive, run the following command:

/opt/stream/sbin/stream-restore -a [encrypted backup archive path] -m [MongoDB URI]

The restoration tool will prompt you for the passphrase that was used to encrypt the backup. If the
archive contains only a configuration backup, the script will perform the equivalent of the -c
parameter. If the archive contains only a database backup, the script will perform the equivalent of
the -d parameter, and you might need to provide the MongoURI through the -m parameter. If the
archive contains both a database and a configuration backup, both of them will be restored.

When the restoration is complete, you can start Stream again using the following command:

systemctl start stream

130

2.13. Dictionaries
Here is the list of available dictionary keys to use in computation rules and template strings,
depending on the usage.

Certificate Authority

This dictionary regroups the information of a Certificate Authority.

Key Description Type

ca.name The technical name of the ca Single value

ca.type The type of ca (managed or
external)

Single value

ca.signer The values from the signer Signer dictionary

OCSP Signer

This dictionary regroups the information of an OCSP signer.

Key Description Type

ocsp.name The technical name of the ocsp
signer

Single value

ocsp.signer The values from the signer Signer dictionary

Timestamping Authority

This dictionary regroups the information of a Timestamping authority.

Key Description Type

tsa.name The technical name of the
timestamping signer

Single value

tsa.signer The values from the signer Signer dictionary

CRL

This dictionary regroups the information of a CRL.

Key Description Type

crl.ca.name The technical name of the ca
that signed the CRL

Single value

crl.ca.type The type of the ca that signed
the CRL

Single value

131

Key Description Type

crl.number The CRL number Single value

crl.this_update The value of this_update Single value

crl.next_update The value of next_update Single value

crl.next_refresh The value of next_refresh Single value

crl.size The number of certificates in
the crl

Single value

crl.eidas "true" if the CRL is eidas
compliant, else "false"

Single value

crl.error The value of the error if the CRL
generation failed

Single value

Credentials

This dictionary regroups the information of a Credential.

Key Description Type

credentials.name The credentials name Single value

credentials.description The credentials description Single value

credentials.expires The credentials expiration date Single value

credentials.type The credentials type Single value

credentials.target The credentials target Single value

In a rest notification, headers can be enriched using the credentials values:

Key Description Type

credentials.login The credentials login value for
Password Credentials

Single value

credentials.password The credentials password value
for Password Credentials

Single value

credentials.secret The credentials secret value for
Raw Credentials

Single value

License

This dictionary regroups the information of the Stream license.

Key Description Type

license.expires The license expiration date Single value

license.modules The enabled modules Single value

132

Sub dictionaries

These dictionary cannot be used alone but can be completed with one of the other ones. For
example, a valid key is:

ocsp.signer.dn.cn.1

Signer dictionary

Key Description Type

dn The full dn of the certificate in
TYPE=value form

Single valued

dn.<dn field type> All values of subject field of
type dn field type

Multi valued

dn.<dn field type>.<index> Value of subject field of type dn
field type at index index

Single value

sans.<sans field type> All values of subject field of
type sans field type

Multi valued

sans.<sans field type>.<index> Value of subject field of type
sans field type at index index

Single value

issuer The full dn of the issuer of the
certificate in TYPE=value form

Single valued

not_before Value of the start date of the
certificate

Single value

not_after Value of the expiration date of
the certificate

Single value

serial The certificate serial Single valued

thumbprint The certificate thumbprint Single valued

public_key_thumbprint The certificate public key
thumbprint

Single valued

key_type The certificate key type Single valued

signing_algorithm The certificate signing
algorithm

Single valued

pem The PEM encoded certificate Single valued


The valid dn field types are: cn, uid, serialnumber, surname, givenname,
unstructuredaddress, unstructuredname, e, ou, organizationidentifier,
uniqueidentifier, street, st, l, o, c, description, dc.


The valid SAN field types are: rfc822name, dnsname, uri, ipaddress, othername_upn,

133

othername_guid, registered_id.

 All indexes start at 1

2.14. Computation rule
Computation Rules are expressions that describe operations to apply to dictionary keys. These keys
can come from diverse data sources such as a certification request or a user entry. The available
operations and their usage are detailed in this part.

Example

Let’s start by an example:

My CSR contains a DNSNAME subject alternate name with the following value:

host.evertrust.fr

I want my final certificate to have 2 SANs, this value and its short name: "host".

In order to do that, in Profile › Certificate Template › Subject Alternate Names , I add a
DNSNAME SAN with the following computation rule:

[{{csr.san.dnsname.1}}, Extract({{csr.san.dnsname.1}}, "(.*?)\.", 1)]

This will output, in my final certificate, two SANs with values:

host.evertrust.fr, host

To explain this result, the value "host.evertrust.fr" was retrieved by choosing the first DNSNAME
SAN of the CSR: {{csr.san.dnsname.1}}. The function Extract extracted the first catching group from
the regex (.*?)\., resulting in the "host" value.

The computation rule language has a lot more possible operations, allowing complex use cases to
become reality.

Dictionary keys

Dictionary keys are a way to name the information from the available sources. For instance, for a
webra enroll, the available sources are the given csr, the webra enroll form data and the principal
information if it is authenticated. The full list of available dictionary keys is available on the
dictionary page.

134

Enrollment

A key can reference a single element or a list of elements. It is separated in three main parts: the
source of data (csr, webra enroll data form), the section of the data, and an optional number

For example, the following is a valid key with these 3 parts:

{{csr.subject.cn.1}}

The csr is the data source, the subject.cn the requested information and the 1 is the index. It allows
to retrieve the first, common name from the subject, from the CSR.

Without an index, the key is still valid, but it will output all the corresponding values. For example

[[csr.subject.ou]]

This retrieves all the ou from the subject, from the CSR.


When a key is expected to output a single value it should be written as a single
dictionary key, and one outputting a list of values as a multi dictionary key,
otherwise it will be none.

Basic expressions

Basic string expressions
The following expressions are evaluated as a string or None.

Expression Name Syntax Allowed Values Description Example

Single dictionary
key

{{<key>}} key: a-zA-A-._ This retrieves a
key value from the
dictionary, none if
it does not exist

{{csr.subject.cn.1}}

Number <number> number: -\d+ This will output
the given number

-4

Literal "<literal>" literal: any string This will output
the given literal

"iAmAString"

Null NULL NULL This will output
None

NULL

Now NOW NOW This will output
the current instant

NOW

Basic list expressions
The following expressions are evaluated as a list of string or None.

135

Expression Name Syntax Allowed Values Description Example

Multi dictionary
key

[[<key>]] key: a-zA-A-._ This retrieves all
values that start
with key from the
dictionary

[[admin-
guide:computation
_rules:::csr.subject.
cn]]

Array [<simpleExpressio
n>, …
<simpleExpression
>]

simpleExpression:
any expression
that will be
evaluated to a
single element

This will output a
multi expression
composed of all
inserted simple
expressions

["iAmAString",
{{csr.san.dnsname
.1}}]

Quick reference

 Function names are not case sensitive but keys are

Function Name Syntax

Upper Upper(expression:<expression>)

Lower Lower(expression:<expression>)

Trim Trim(expression: <expression>)

Substr Substr(expression: <expression>, start:
<number>)

Substr Substr(expression: <expression>, start:
<number>, end: <number>)

Concat Concat(expression: <expression>, …
<expression>)

Extract Extract(expression: <expression>, regex:
<literal>)

Extract Extract(expression: <expression>, regex:
<literal>, group: <number>)

Replace Replace(expression: <expression>, regex:
<literal>, replacement: <expression>)

OrElse OrElse(expression: <expression>, …
<expression>)

Match Match(expression: <simpleExpression>, regex:
<literal>)

DateTimeFormat DateTimeFormat(expression:
<simpleExpression>, format: <literal>)

Get Get(expression: <multiExpression>, index:
<number>)

First First(expression: <multiExpression>)

Last Last(expression: <multiExpression>)

136

Function Name Syntax

Filter Filter(expression: <multiExpression>, regex:
<literal>)

Slice Slice(expression: <multiExpression>, start:
<number>)

Slice Slice(expression: <multiExpression>, start:
<number>, end: <number>)

Any expression functions

Upper

Upper(expression:<expression>)

This outputs the result evaluated from expression with only upper case characters and None if no
value was evaluated

Upper("string") => "STRING"
Upper(["string1", "string2"]) => ["STRING1", "STRING2"]

Lower

Lower(expression:<expression>)

This outputs the result evaluated from expression with only lower case characters and None if no
value was evaluated

Lower("STRING") => "string"
Lower(["STRING1", "STRING2"]) => ["string1", "string2"]

Trim

Trim(expression:<expression>)

This outputs the trimmed result evaluated from expression and None if no value was evaluated

Trim(" STRING") => "STRING"
Trim(["string1 ", " string2 "]) => ["string1", "string2"]

137

Substr

Substr(expression: <expression>, start: <number>)

This outputs the substring from index start to the end of the string evaluated from expression and
None if no value was evaluated or the result of substring is empty. start can be negative and it will
be computed from end of string.

Substr("STRING", 2) => "TRING"
Substr(["string", "longerString", "s"], -2) => ["ng", "ng", "s"]
Substr("tooShort", 15) => None

Substr

Substr(expression: <expression>, start: <number>, end: <number>)

This outputs the substring from index start to end of the string evaluated from expression and None
if no value was evaluated or the result of substring is empty. start and end can be negative and it
will be computed from end of string.

Substr("STRING", 2, 4) => "TRI"
Substr(["string", "longerString", "s"], 2, -2) => ["tri", "ongerStri"]
Substr("tooShort", -2, 4) => None

Concat

Concat(expression: <expression>, ...<expression>)

This outputs the concatenation of evaluated expressions: if they are all simple expression, a string
concatenation will take place, otherwise an array with all the values will be evaluated. If the final
result is empty, None will be returned.

Concat("start", " middle ", "end") => "start middle end"
Concat(["string1", "string2", "string3"], "string4") => ["string1", "string2",
"string3", "string4"]

Extract

Extract(expression: <expression>, regex: <literal>)

This extracts from the evaluated expression string(s) the part that matches the regex

138

Extract("abcd@domain.com", ".*@") => "abcd@"
Extract(["string1", "string2", "string3"], "\d") => ["1", "2", "3"]

Extract

Extract(expression: <expression>, regex: <literal>, group: <number>)

This extracts from the evaluated expression string(s) the group at index group that matches the
regex

Extract("abcd@domain.com", "(.*)@", 1) => "abcd"
Extract(["string1", "string2", "string3"], "(.*)\d", 1) => ["string", "string",
"string"]

Replace

Replace(expression: <expression>, regex: <literal>, replacement: <expression>)

This replaces parts of the evaluated expression string(s) that matches the regex with the evaluated
replacement. If replacement is None, values will be replaced by an empty string.

Replace("abcdATdomain.com", "AT", "@") => "abcd@domain.com"
Replace(["string1", "string2", "string3"], "\d", CONCAT("This", " was ", " a number"))
=> ["stringThis was a number", "stringThis was a number", "stringThis was a number"]

OrElse

OrElse(expression: <expression>, ...<expression>)

This outputs the first non None result of the given expressions, or None if they are all None

OrElse({{not.a.value}}, "abcd@domain.com") => "abcd@domain.com"
OrElse([[no.values]], "value") => ["value"]
OrElse([[no.values]], {{not.a.value}}) => None

String functions

 The following functions output a string or None.

139

Match

Match(expression: <simpleExpression>, regex: <literal>)

This outputs the expression if it matches the regex, otherwise None

Match("abcd", "[a-z]+") => "abcd"
Match("abcd", "\d+") => None

DateTimeFormat

DateTimeFormat(expression: <simpleExpression>, format: <literal>)

This outputs the expression formatted as format. If expression is not a date, no formatting takes
place. Available formats are:

• Custom format in Java DateFormatter syntax

• MILLIS

• BASIC_ISO_DATE

• ISO_LOCAL_DATE

• ISO_OFFSET_DATE

• ISO_DATE

• ISO_LOCAL_TIME

• ISO_OFFSET_TIME

• ISO_TIME

• ISO_LOCAL_DATE_TIME

• ISO_ZONED_DATE_TIME

• ISO_DATE_TIME

• ISO_ORDINAL_DATE

• ISO_WEEK_DATE

• ISO_INSTANT

• RFC_1123_DATE_TIME

DateTimeFormat(NOW, "MILLIS") => "1709290260764"
DateTimeFormat(NOW, "hh:mm:ss") => "10:54:57"

140

Get

Get(expression: <multiExpression>, index: <number>)

This outputs the string at index index in the expression list, and None if the index does not exist. The
index can be negative to get from the end of the list.

Get(["string1", "string2", "string3", "string4"], -2) => "string3"
Get(["string1", "string2"], 3) => None

First

First(expression: <multiExpression>)

This outputs the first string of the expression list, and None if it does not exist. The index can be
negative to get from the end of the list.

First(["string1", "string2", "string3", "string4"]) => "string1"
First([[no.values]]) => None

Last

Last(expression: <multiExpression>)

This outputs the last string of the expression list, and None if it does not exist. The index can be
negative to get from the end of the list.

Last(["string1", "string2", "string3", "string4"]) => "string4"
Last([[no.values]]) => None

List of string functions

 The following functions output a list of string or None.

Filter

Filter(expression: <multiExpression>, regex: <literal>)

This outputs a list of string from expression that matches the regex, None if none matches

141

Filter(["string1", "string2", "match"], "[a-z]+") => ["match"]
Filter(["string1", "string2"], "[a-z]+") => None

Slice

Slice(expression: <multiExpression>, start: <number>)

This outputs the slice of the expression list between start index and its end, or None if the slice is
invalid. The index can be negative to get from the end of the list.

Slice(["string1", "string2", "string3", "string4"], -2) => ["string3", "string4"]
Slice(["string1", "string2"], 3) => None

Slice

Slice(expression: <multiExpression>, start: <number>, end: <number>)

This outputs the slice of the expression list between start and end index, or None if the slice is
invalid. The index can be negative to get from the end of the list.

Slice(["string1", "string2", "string3", "string4"], 1, 3) => ["string1", "string2",
"string3"]
Slice(["string1", "string2"], 3) => None

2.15. Template Strings
Template Strings are augmented strings. They can be used as normal text but can also be
augmented:

Using dictionary values

Using the following format, a dictionary key will be interpreted to its value when sending the
notification:

{{<dictionary key>}}

Example:

I am enrolling on {{ca.name}}

142

Depending on the notification event, values will be added to context to be interpreted.

 If the value is not available in the context, the dictionary value will not be replaced

Using computation rules

Using the following format, a computation rule will be interpreted to its value when sending the
notification:

{{<computation rule>}}

Example:

I am enrolling on {{ Lower({{ca.name}}) }}

Depending on the notification event, values will be added to context to be interpreted in the
computation rule.


If the computation rule result is None, an empty string will be displayed. If it is an
array, it will be in a comma separated string

143

	Stream
	Table of Contents
	Chapter 1. Installation
	1.1. Introduction
	1.2. Installing on CentOS/RHEL
	1.3. Installing on Kubernetes
	1.4. Monitoring
	1.5. Troubleshooting
	1.6. Advanced configuration

	Chapter 2. Admin guide
	2.1. Introduction
	2.2. Managing Certification Authorities
	2.3. Managing Certificate Revocation
	2.4. Managing Certificate Templates & EKUs
	2.5. Managing Certificate Lifecycle
	2.6. OpenSSH
	2.7. Managing Keystores & Keys
	2.8. Managing Notifications
	2.9. Managing Security
	2.10. Managing Stream instance
	2.11. Timestamping
	2.12. Backup and Restore
	2.13. Dictionaries
	2.14. Computation rule
	2.15. Template Strings

